World Library  
Flag as Inappropriate
Email this Article

Human serum albumin

Article Id: WHEBN0003993576
Reproduction Date:

Title: Human serum albumin  
Author: World Heritage Encyclopedia
Language: English
Subject: Albumin, Comprehensive metabolic panel, Paclitaxel, Cohn process, Plasma protein binding
Collection: Blood Proteins, Liver Function Tests, Proteins
Publisher: World Heritage Encyclopedia

Human serum albumin

human serum albumin
PDB rendering based on 1e7h.
Symbol ALB
Entrez 213
HUGO 399
OMIM 103600
RefSeq NM_000477
UniProt P02768
Other data
Locus Chr. 4 q13.3

Human serum albumin is the version of serum albumin found in human blood. It is the most abundant protein in human blood plasma; it constitutes about half of serum protein. It is produced in the liver. It is soluble and monomeric.

Albumin transports hormones, fatty acids, and other compounds, buffers pH, and maintains osmotic pressure, among other functions.

Albumin is synthesized in the liver as preproalbumin, which has an N-terminal peptide that is removed before the nascent protein is released from the rough endoplasmic reticulum. The product, proalbumin, is in turn cleaved in the Golgi vesicles to produce the secreted albumin.

The reference range for albumin concentrations in serum is approximately 35 - 50 g/L (3.5 - 5.0 g/dL).[1] It has a serum half-life of approximately 20 days. It has a molecular mass of 66.5 kDa.

The gene for albumin is located on chromosome 4 and mutations in this gene can result in anomalous proteins. The human albumin gene is 16,961 nucleotides long from the putative 'cap' site to the first poly(A) addition site. It is split into 15 exons that are symmetrically placed within the 3 domains thought to have arisen by triplication of a single primordial domain.


  • Function 1
  • Measurement 2
  • Reference ranges 3
  • Pathology 4
    • Hypoalbuminemia 4.1
    • Hyperalbuminemia 4.2
    • Therapeutic uses 4.3
  • Glycation 5
  • Loss via kidneys 6
  • Amino acid sequence 7
  • Interactions 8
  • See also 9
  • References 10
  • Further reading 11
  • External links 12


  • Maintains oncotic pressure
  • Transports thyroid hormones
  • Transports other hormones, in particular, ones that are fat-soluble
  • Transports fatty acids ("free" fatty acids) to the liver and to myocytes for utilization of energy
  • Transports unconjugated bilirubin
  • Transports many drugs; serum albumin levels can affect the half-life of drugs
  • Competitively binds calcium ions (Ca2+)
  • Buffers pH
  • Serum albumin, as a negative acute-phase protein, is down-regulated in inflammatory states. As such, it is not a valid marker of nutritional status; rather, it is a marker of an inflammatory state
  • Prevents photodegradation of folic acid


Serum albumin is commonly measured by recording the change in absorbance upon binding to a dye such as bromocresol green or bromocresol purple.[2]

Reference ranges

Serum albumin concentration is typically 35 - 50 g/L (3.5 - 5.0 g/dL)[1]



Hypoalbuminemia is a low blood albumin levels.[3] This can be caused by:

  • Liver disease; cirrhosis of the liver is most common
  • Excess excretion by the kidneys (as in nephrotic syndrome)
  • Excess loss in bowel (protein-losing enteropathy, e.g., Ménétrier's disease)
  • Burns (plasma loss in the absence of skin barrier)
  • Redistribution (hemodilution [as in pregnancy], increased vascular permeability or decreased lymphatic clearance)
  • Acute disease states (referred to as a negative acute-phase protein)
  • Malnutrition and wasting[4]
  • Mutation causing analbuminemia (very rare)


Hyperalbuminemia is an increased concentration of albumin in the blood.[5] Typically, this condition is due to abrupt dehydration.[5]

Chronic dehydration needs to be treated with zinc as well as with water. Zinc reduces cell swelling caused by decreased intake of water (hypotonicity) and also increases retention of salt. In the dehydrated state, the body has too high an osmolarity and, it appears, discards zinc to prevent this. Zinc also regulates transport of the cellular osmolyte taurine, and albumin is known to increase cellular taurine absorption. Zinc has been shown to increase retinol (vitamin A) production from beta-carotene, and in lab experiments retinol reduced human albumin production.[6] It is possible that a retinol (vitamin A) deficiency alone could cause albumin levels to become raised. Patients recovering from chronic dehydration may develop dry eyes as the body uses up its vitamin A store. Retinol causes cells to swell with water (this is most likely one reason that too much vitamin A is toxic).[7] Hyperalbuminemia is also associated with high protein diets.[8]

Therapeutic uses

Human albumin solution or HSA is available for medical use, usually at concentrations of 5-25%.

Human albumin is often used to replace lost fluid and help restore blood volume in trauma, burns and surgery patients. A Cochrane systematic review[9] of 37 trials found no evidence that albumin, compared with cheaper alternatives such as saline, reduces the risk of dying.

Human serum albumin has been used as a component of a frailty index.[4]

It has not been shown to give better results than other fluids when used simply to replace volume, but is frequently used in conditions where loss of albumin is a major problem, such as liver disease with ascites.


It has been known for a long time that human blood proteins like hemoglobin[10] and serum albumin[11][12] may undergo a slow non-enzymatic glycation, mainly by formation of a Schiff base between ε-amino groups of lysine (and sometimes arginine) residues and glucose molecules in blood (Maillard reaction). This reaction can be inhibited in the presence of antioxidant agents.[13] Although this reaction may happen normally,[11] elevated glycoalbumin is observed in diabetes mellitus.[12]

Glycation has the potential to alter the biological structure and function of the serum albumin protein.[14][15][16][17]

Moreover, the glycation can result in the formation of Advanced Glycation End-Products (AGE), which result in abnormal biological effects. Accumulation of AGEs leads to tissue damage via alteration of the structures and functions of tissue proteins, stimulation of cellular responses, through receptors specific for AGE-proteins, and generation of reactive oxygen intermediates. AGEs also react with DNA, thus causing mutations and DNA transposition. Thermal processing of proteins and carbohydrates brings major changes in allergenicity. AGEs are antigenic and represent many of the important neoantigens found in cooked or stored foods.[18] They also interfere with the normal product of nitric oxide in cells.[19]

Although there are several lysine and arginine residues in the serum albumin structure, very few of them can take part in the glycation reaction.[12][20] It is not clear exactly why only these residues are glycated in serum albumin, but it is suggested that non-covalent binding of glucose to serum albumin prior to the covalent bond formation might be the reason.[21]

Loss via kidneys

In the healthy kidney, albumin's size and negative electric charge exclude it from excretion in the glomerulus. This is not always the case, as in some diseases including diabetic nephropathy, which can sometimes be a complication of uncontrolled or of longer term diabetes in which proteins can cross the glomerulus. The lost albumin can be detected by a simple urine test.[22] Depending on the amount of albumin lost, a patient may have normal renal function, microalbuminuria, or albuminuria.

Amino acid sequence

The approximate sequence of human serum albumin is:[23]


Of the 609 amino acids in this sequence, encoded by the ALB gene and translated to form the precursor protein, only 585 amino acids are observed in the final product present in the blood; the first 24 amino acids (here italicized), including the signal peptide (1–18) and propeptide (19–22, or 19–24) portions, are cleaved after translation.


Human serum albumin has been shown to interact with FCGRT.[24]

See also


  1. ^ a b "Harmonisation of Reference Intervals" (PDF). Pathology Harmony. Retrieved 23 June 2013. 
  2. ^ "Albumin: analyte monograph" (PDF). Association for Clinical Biochemistry and Laboratory Medicine. Retrieved 23 June 2013. 
  3. ^ Anderson, Douglas M. (2000). Dorland's illustrated medical dictionary (29. ed.). Philadelphia [u.a.]: Saunders. p. 860.  
  4. ^ a b Green P, Woglom AE, Genereux P, Daneault B, Paradis JM, Schnell S, Hawkey M, Maurer MS, Kirtane AJ, Kodali S, Moses JW, Leon MB, Smith CR, Williams M (2012). "The impact of frailty status on survival after transcatheter aortic valve replacement in older adults with severe aortic stenosis: a single-center experience".  
  5. ^ a b Walker, edited by H. Kenneth; Hall, W. Dallas; Schlossberg, J. Willis Hurst ; illustrations by Leon; Boyter, Charles H. (1990). Clinical methods : the history, physical, and laboratory examinations (3rd ed.). Boston: Butterworths. p. Chapter 101.  
  6. ^ Masaki T, Matsuura T, Ohkawa K, Miyamura T, Okazaki I, Watanabe T, Suzuki T (July 2006). "All-trans retinoic acid down-regulates human albumin gene expression through the induction of C/EBPβ-LIP". Biochem. J. 397 (2): 345–53.  
  7. ^ Pasantes-Morales H, Wright CE, Gaull GE (December 1984). "Protective effect of taurine, zinc and tocopherol on retinol-induced damage in human lymphoblastoid cells". J. Nutr. 114 (12): 2256–61.  
  8. ^ Mutlu EA, Keshavarzian A, Mutlu GM (June 2006). "Hyperalbuminemia and elevated transaminases associated with high-protein diet". Scand. J. Gastroenterol. 41 (6): 759–60.  
  9. ^ The Albumin Reviewers (Alderson P, Bunn F, Li Wan Po A, Li L, Pearson M, Roberts I, Schierhout G). Human albumin solution for resuscitation and volume expansion in critically ill patients" Cochrane Database of Systematic Reviews 2004, Issue 4. Art. No.: CD001208. doi:10.1002/14651858.CD001208.pub2.
  10. ^ Rahbar S (October 1968). "An abnormal hemoglobin in red cells of diabetics". Clin. Chim. Acta 22 (2): 296–8.  
  11. ^ a b Day JF, Thorpe SR, Baynes JW (February 1979). "Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum". J. Biol. Chem. 254 (3): 595–7.  
  12. ^ a b c Iberg N, Flückiger R (October 1986). "Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites". J. Biol. Chem. 261 (29): 13542–5.  
  13. ^ Jakus V, Hrnciarová M, Cársky J, Krahulec B, Rietbrock N (1999). "Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with antioxidant activity". Life Sci. 65 (18–19): 1991–3.  
  14. ^ Mohamadi-Nejad A, Moosavi-Movahedi AA, Hakimelahi GH, Sheibani N (September 2002). "Thermodynamic analysis of human serum albumin interactions with glucose: insights into the diabetic range of glucose concentration". Int. J. Biochem. Cell Biol. 34 (9): 1115–24.  
  15. ^ Shaklai N, Garlick RL, Bunn HF (March 1984). "Nonenzymatic glycosylation of human serum albumin alters its conformation and function". J. Biol. Chem. 259 (6): 3812–7.  
  16. ^ Mendez DL, Jensen RA, McElroy LA, Pena JM, Esquerra RM (December 2005). "The effect of non-enzymatic glycation on the unfolding of human serum albumin". Arch. Biochem. Biophys. 444 (2): 92–9.  
  17. ^ Mohamadi-Nejada A, Moosavi-Movahedi AA,Safariana S, Naderi-Maneshc MH, Ranjbarc B, Farzamid B, Mostafavie H, Larijanif MB, Hakimelahi GH, A (July 2002). "The thermal analysis of nonezymatic glycosylation of human serum albumin: differential scanning calorimetry and circular dichroism studies". Thermochimica Acta 389 (1–2): 141–151.  
  18. ^ Kańska U, Boratyński J (2002). "Thermal glycation of proteins by D-glucose and D-fructose". Arch. Immunol. Ther. Exp. (Warsz.) 50 (1): 61–6.  
  19. ^ Rojas A, Romay S, González D, Herrera B, Delgado R, Otero K (February 2000). "Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products". Circ. Res. 86 (3): E50–4.  
  20. ^ Garlick RL, Mazer JS (May 1983). "The principal site of nonenzymatic glycosylation of human serum albumin in vivo". J. Biol. Chem. 258 (10): 6142–6.  
  21. ^ Marashi SA, Safarian S, Moosavi-Movahedi AA (2005). "Why major nonenzymatic glycation sites of human serum albumin are preferred to other residues?". Med. Hypotheses 64 (4): 881.  
  22. ^ Microalbumin Urine Test
  23. ^
  24. ^ Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, Anderson CL (February 2003). "The Major Histocompatibility Complex–related Fc Receptor for IgG (FcRn) Binds Albumin and Prolongs Its Lifespan". J. Exp. Med. 197 (3): 315–22.  

Further reading

  • Komatsu T, Nakagawa A, Curry S, Tsuchida E, Murata K, Nakamura N, Ohno H (2009). "The role of an amino acid triad at the entrance of the heme pocket in human serum albumin for O(2) and CO binding to iron protoporphyrin IX". Org. Biomol. Chem. 7 (18): 3836–41.  
  • Milojevic J, Raditsis A, Melacini G (2009). "Human Serum Albumin Inhibits Aβ Fibrillization through a "Monomer-Competitor" Mechanism". Biophys. J. 97 (9): 2585–94.  
  • Silva AM, Hider RC (2009). "Influence of non-enzymatic post-translation modifications on the ability of human serum albumin to bind iron. Implications for non-transferrin-bound iron speciation". Biochim. Biophys. Acta 1794 (10): 1449–58.  
  • Otosu T, Nishimoto E, Yamashita S (2010). "Multiple conformational state of human serum albumin around single tryptophan residue at various pH revealed by time-resolved fluorescence spectroscopy". J. Biochem. 147 (2): 191–200.  
  • Blindauer CA, Harvey I, Bunyan KE, Stewart AJ, Sleep D, Harrison DJ, Berezenko S, Sadler PJ (2009). "Structure, Properties, and Engineering of the Major Zinc Binding Site on Human Albumin". J. Biol. Chem. 284 (34): 23116–24.  
  • Juárez J, López SG, Cambón A, Taboada P, Mosquera V (2009). "Influence of electrostatic interactions on the fibrillation process of human serum albumin". J Phys Chem B 113 (30): 10521–9.  
  • Fu BL, Guo ZJ, Tian JW, Liu ZQ, Cao W (2009). "[Advanced glycation end products induce expression of PAI-1 in cultured human proximal tubular epithelial cells through NADPH oxidase dependent pathway]". Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 25 (8): 674–7.  
  • Ascenzi P, di Masi A, Coletta M, Ciaccio C, Fanali G, Nicoletti FP, Smulevich G, Fasano M (2009). "Ibuprofen Impairs Allosterically Peroxynitrite Isomerization by Ferric Human Serum Heme-Albumin". J. Biol. Chem. 284 (45): 31006–17.  
  • Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009). "Defining the Human Deubiquitinating Enzyme Interaction Landscape". Cell 138 (2): 389–403.  
  • Curry S (2002). "Beyond expansion: structural studies on the transport roles of human serum albumin". Vox Sang. 83 Suppl 1: 315–9.  
  • Guo S, Shi X, Yang F, Chen L, Meehan EJ, Bian C, Huang M (2009). "Structural basis of transport of lysophospholipids by human serum albumin". Biochem. J. 423 (1): 23–30.  
  • de Jong PE, Gansevoort RT (2009). "Focus on microalbuminuria to improve cardiac and renal protection". Nephron Clin Pract 111 (3): c204–10; discussion c211.  
  • Page TA, Kraut ND, Page PM, Baker GA, Bright FV (2009). "Dynamics of loop 1 of domain I in human serum albumin when dissolved in ionic liquids". J Phys Chem B 113 (38): 12825–30.  
  • Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008). "The antioxidant properties of serum albumin". FEBS Lett. 582 (13): 1783–7.  
  • Wyatt AR, Wilson MR (2010). "Identification of Human Plasma Proteins as Major Clients for the Extracellular Chaperone Clusterin". J. Biol. Chem. 285 (6): 3532–9.  
  • Cui FL, Yan YH, Zhang QZ, Qu GR, Du J, Yao XJ (2010). "A study on the interaction between 5-Methyluridine and human serum albumin using fluorescence quenching method and molecular modeling". J Mol Model 16 (2): 255–62.  
  • Caridi G, Dagnino M, Simundic AM, Miler M, Stancic V, Campagnoli M, Galliano M, Minchiotti L (2010). "Albumin Benkovac (c.1175 A > G; p.Glu392Gly): a novel genetic variant of human serum albumin".  
  • Deeb O, Rosales-Hernández MC, Gómez-Castro C, Garduño-Juárez R, Correa-Basurto J (2010). "Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand-protein interactions". Biopolymers 93 (2): 161–70.  
  • Karahan SC, Koramaz I, Altun G, Uçar U, Topbaş M, Menteşe A, Kopuz M (2010). "Ischemia-modified albumin reduction after coronary bypass surgery is associated with the cardioprotective efficacy of cold-blood cardioplegia enriched with N-acetylcysteine: a preliminary study". Eur Surg Res 44 (1): 30–6.  
  • Jin C, Lu L, Zhang RY, Zhang Q, Ding FH, Chen QJ, Shen WF (2009). "Association of serum glycated albumin, C-reactive protein and ICAM-1 levels with diffuse coronary artery disease in patients with type 2 diabetes mellitus". Clin. Chim. Acta 408 (1–2): 45–9.  

External links

  • Human Albumin structure in the Protein data bank
  • Human Albumin information in the Swis-Prot/TrEMBL database
  • Human Serum Albumin on the Human Protein Reference Database
  • Albumin binding prediction
  • Albumin at Lab Tests Online
  • Albumin: analyte monograph from the Association for Clinical Biochemistry and Laboratory Medicine
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.