World Library  
Flag as Inappropriate
Email this Article

Hypohidrotic ectodermal dysplasia

Article Id: WHEBN0006701668
Reproduction Date:

Title: Hypohidrotic ectodermal dysplasia  
Author: World Heritage Encyclopedia
Language: English
Subject: X-linked intellectual disability, Dyskeratosis congenita, Hirschsprung's disease, X-linked severe combined immunodeficiency, Nephrogenic diabetes insipidus
Collection: Defects in Innate Immunity, Genodermatoses
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Hypohidrotic ectodermal dysplasia

Hypohidrotic ectodermal dysplasia
Classification and external resources
ICD-10 Q82.4
ICD-9-CM 757.31
OMIM 305100 224900, 129490
DiseasesDB 29810
GeneReviews
  • Hypohidrotic Ectodermal Dysplasia

Hypohidrotic ectodermal dysplasia (also known as "Anhidrotic ectodermal dysplasia," and "Christ-Siemens-Touraine syndrome"[1]:570) is one of about 150 types of ectodermal dysplasia in humans. Before birth, these disorders result in the abnormal development of structures including the skin, hair, nails, teeth, and sweat glands.[2]:515–517

Contents

  • Presentation 1
  • Genetics 2
    • EDA (X-linked) 2.1
    • EDAR or EDARADD (autosomal) 2.2
  • Notable individuals 3
  • See also 4
  • References 5
  • External links 6

Presentation

Actor Michael Berryman displays outward symptoms of the condition.

Most people with hypohidrotic ectodermal dysplasia have a reduced ability to sweat (hypohidrosis) because they have fewer sweat glands than normal or their sweat glands do not function properly. Sweating is a major way that the body controls its temperature; as sweat evaporates from the skin, it cools the body. An inability to sweat can lead to a dangerously high body temperature (hyperthermia) particularly in hot weather. In some cases, hyperthermia can cause life-threatening medical problems.

Affected individuals tend to have sparse scalp and body hair (hypotrichosis). The hair is often light-coloured, brittle, and slow-growing. This condition is also characterized by absent teeth (hypodontia) or teeth that are malformed. The teeth that are present are frequently small and pointed.

Hypohidrotic ectodermal dysplasia is associated with distinctive facial features including a prominent forehead, thick lips, and a flattened bridge of the nose. Additional features of this condition include thin, wrinkled, and dark-colored skin around the eyes; chronic skin problems such as eczema; and a bad-smelling discharge from the nose (ozena).

Hypohidrotic ectodermal dysplasia is the most common form of ectodermal dysplasia in humans. It is estimated to affect at least 1 in 17,000 people worldwide.

Genetics

X-linked recessive inheritance

Mutations in the EDA, EDAR, and EDARADD genes cause hypohidrotic ectodermal dysplasia. The EDA, EDAR, and EDARADD genes provide instructions for making proteins that work together during embryonic development. These proteins form part of a signaling pathway that is critical for the interaction between two cell layers, the ectoderm and the mesoderm. In the early embryo, these cell layers form the basis for many of the body's organs and tissues. Ectoderm-mesoderm interactions are essential for the formation of several structures that arise from the ectoderm, including the skin, hair, nails, teeth, and sweat glands.

Hypohidrotic ectodermal dysplasia has several different inheritance patterns.

EDA (X-linked)

Most cases are caused by mutations in the EDA gene, which are inherited in an X-linked recessive pattern, called x-linked hypohidrotic ectodermal dysplasia (XLHED). A condition is considered X-linked if the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation must be present in both copies of the gene to cause the disorder. Males are affected by X-linked recessive disorders much more frequently than females. A striking characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

In X-linked recessive inheritance, a female with one altered copy of the gene in each cell is called a carrier. Since females operate on only one of their two X chromosomes (X inactivation) a female carrier may or may not manifest symptoms of the disease. If a female carrier is operating on her normal X she will not show symptoms. If a female is operating on her carrier X she will show symptoms.In about 70 percent of cases, carriers of hypohidrotic ectodermal dysplasia experience some features of the condition. These signs and symptoms are usually mild and include a few missing or abnormal teeth, sparse hair, and some problems with sweat gland function. Some carriers, however, have more severe features of this disorder.

Other than managing symptoms, there is currently no treatment for XLHED. However in December 2012 Edimer Pharmaceuticals a biotechnology company based in Cambridge, MA USA, initiated a Phase I, open-label, safety and pharmacokinetic clinical study of EDI200, a drug aimed at the treatment of XLHED. During development in mice and dogs EDI200 has been shown to substitute for the altered or missing protein resulting from the EDA mutation, which causes XLHED. The initiation of a clinical study of EDI200 in neonates started in October 2013 with the first neonate tested.[3]

EDAR or EDARADD (autosomal)

Less commonly, hypohidrotic ectodermal dysplasia results from mutations in the EDAR or EDARADD gene. EDAR mutations can have an autosomal dominant or autosomal recessive pattern of inheritance, and EDARADD mutations have an autosomal recessive pattern of inheritance. Autosomal dominant inheritance means one copy of the altered gene in each cell is sufficient to cause the disorder. Autosomal recessive inheritance means two copies of the gene in each cell are altered. Most often, the parents of an individual with an autosomal recessive disorder are carriers of one copy of the altered gene but do not show signs and symptoms of the disorder.

Notable individuals

See also

References

  1. ^ James, William; Berger, Timothy; Elston, Dirk (2005). Andrews' Diseases of the Skin: Clinical Dermatology. (10th ed.). Saunders. ISBN 0-7216-2921-0.
  2. ^ Freedberg, et al. (2003). Fitzpatrick's Dermatology in General Medicine. (6th ed.). McGraw-Hill. ISBN 0-07-138076-0.
  3. ^ "First Baby Dosed in Clinical Trial for XLHED". National Foundation for Ectodermal Dysplasias. Retrieved 3 February 2014. 

External links

  • GeneReview/NIH/UW entry on Hypohidrotic Ectodermal Dysplasia
  • Hypohidrotic ectodermal dysplasia at NLM Genetics Home Reference
  • Author Web Site for Bonnie J. Rough, whose award-winning memoir "Carrier: Untangling the Danger in My DNA" describes one family's experience with hypohidrotic ectodermal dysplasia
  • Bonnie J. Rough speaks about her family's history with HED on KRUI's The Lit Show
  • Edimer Pharmaceuticals, a biotechnology company based in Cambridge, MA, USA dedicated to developing EDI200 as a potential therapy for X-linked Hypohidrotic Ectodermal Dysplasia (XLHED).
  • Have the Conversation, a resource website for families affected by X-linked HED.
  • The XLHED Network, a website dedicated to connecting the XLHED community.
  • Visit ClinicalTrials.gov for a list of clinical trials related to Ectodermal Dysplasia.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.