World Library  
Flag as Inappropriate
Email this Article

Iron-56

Article Id: WHEBN0004229687
Reproduction Date:

Title: Iron-56  
Author: World Heritage Encyclopedia
Language: English
Subject: Nuclear binding energy, Nuclear fusion, Isotopes of iron, Iron group, ITER
Collection: Isotopes of Iron
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Iron-56


Nuclear binding energy per nucleon of common isotopes; iron-56 labelled at the curve's crest.

Iron-56 (56Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56.

Of all nuclides, iron-56 has the lowest mass per nucleon. With 8.8 MeV binding energy per nucleon, iron-56 is one of the most tightly bound nuclei.[1]

Nickel-62, a relatively rare isotope of nickel, has a higher nuclear binding energy per nucleon; this is consistent with having a higher mass per nucleon because nickel-62 has a greater proportion of neutrons, which are slightly more massive than protons.

Thus, light elements undergoing nuclear fusion and heavy elements undergoing nuclear fission release energy as their nucleons bind more tightly, and the resulting nuclei approach the maximum total energy per nucleon, which occurs at 62Ni. However, during nucleosynthesis in stars the competition between photodisintegration and alpha capturing causes more 56Ni to be produced than 62Ni (56Fe is produced later in the star's ejection shell as 56Ni decays). This means that as the Universe ages, more matter is converted into extremely tightly bound nuclei, such as 56Fe. This progression of matter towards iron and nickel is one of the phenomena responsible for the heat death of the universe.

Production of these elements has decreased considerably from what it was at the beginning of the stelliferous era; in all likelihood, not all matter will be converted into such elements.

See also

References

  1. ^ Statistics Netherlands (CBS), Gemeente Op Maat 2004: Wieringen [1].


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.