World Library  
Flag as Inappropriate
Email this Article

Java Card

Article Id: WHEBN0002070564
Reproduction Date:

Title: Java Card  
Author: World Heritage Encyclopedia
Language: English
Subject: Java (programming language), Java Platform, Micro Edition, Java Access Bridge, Java Object Oriented Querying, Java Web Start
Publisher: World Heritage Encyclopedia

Java Card

Java Card refers to a software technology that allows Java-based applications (applets) to be run securely on smart cards and similar small memory footprint devices. Java Card is the tiniest of Java platforms targeted for embedded devices. Java Card gives the user the ability to program the devices and make them application specific. It is widely used in SIM cards (used in GSM mobile phones) and ATM cards. The first Java Card was introduced in 1996 by Schlumberger's card division which later merged with Gemplus to form Gemalto. Java Card products are based on the Java Card Platform specifications developed by Sun Microsystems (later a subsidiary of Oracle Corporation). Many Java card products also rely on the GlobalPlatform specifications for the secure management of applications on the card (download, installation, personalization, deletion).

The main design goals of the Java Card technology are portability and security.[1]


Java Card aims at defining a standard smart card computing environment allowing the same Java Card applet to run on different smart cards, much like a Java applet runs on different computers. As in Java, this is accomplished using the combination of a virtual machine (the Java Card Virtual Machine), and a well-defined runtime library, which largely abstracts the applet from differences between smart cards. Portability remains mitigated by issues of memory size, performance, and runtime support (e.g. for communication protocols or cryptographic algorithms).


Java Card technology was originally developed for the purpose of securing sensitive information stored on smart cards. Security is determined by various aspects of this technology:

Data encapsulation
Data is stored within the application, and Java Card applications are executed in an isolated environment (the Java Card VM), separate from the underlying operating system and hardware.
Applet Firewall
Unlike other Java VMs, a Java Card VM usually manages several applications, each one controlling sensitive data. Different applications are therefore separated from each other by an applet firewall which restricts and checks access of data elements of one applet to another.
Commonly used symmetric key algorithms like DES, Triple DES, AES, and asymmetric key algorithms such as RSA, elliptic curve cryptography are supported as well as other cryptographic services like signing, key generation and key exchange.
The applet is a state machine which processes only incoming command requests and responds by sending data or response status words back to the interface device.

Java Card vs. Java


At the language level, Java Card is a precise subset of Java: all language constructs of Java Card exist in Java and behave identically. This goes to the point that as part of a standard build cycle, a Java Card program is compiled into a Java class file by a Java compiler; the class file is post-processed by tools specific to the Java Card platform.

However, many Java language features are not supported by Java Card (in particular types char, double, float and long; the transient qualifier; enums; arrays of more than one dimension; finalization; object cloning; threads). Further, some common features of Java are not provided at runtime by many actual smart cards (in particular type int, which is the default type of a Java expression; and garbage collection of objects).


Java Card bytecode run by the Java Card Virtual Machine is a functional subset of Java 2 bytecode run by a standard Java Virtual Machine but with a different encoding to optimize for size. A Java Card applet thus typically uses less bytecode than the hypothetical Java applet obtained by compiling the same Java source code. This conserves memory, a necessity in resource constrained devices like smart cards. As a design tradeoff, there is no support for some Java language features (as mentioned above), and size limitations. Techniques exist for overcoming the size limitations, such as dividing the application's code into packages below the 64 KiB limit.

Library and runtime

Standard Java Card class library and runtime support differs a lot from that in Java, and the common subset is minimal. For example, the Java Security Manager class is not supported in Java Card, where security policies are implemented by the Java Card Virtual Machine; and transients (non-persistent, fast RAM variables that can be class members) are supported via a Java Card class library, while they have native language support in Java.

Specific features

The Java Card runtime and virtual machine also support features that are specific to the Java Card platform:

With Java Card, objects are by default stored in persistent memory (RAM is very scarce on smart cards, and it is only used for temporary or security-sensitive objects). The runtime environment as well as the bytecode have therefore been adapted to manage persistent objects.
As smart cards are externally powered and rely on persistent memory, persistent updates must be atomic. The individual write operations performed by individual bytecode instructions and API methods are therefore guaranteed atomic, and the Java Card Runtime includes a limited transaction mechanism.
Applet isolation
The Java Card firewall is a mechanism that isolates the different applets present on a card from each other. It also includes a sharing mechanism that allows an applet to explicitly make an object available to other applets.


Coding techniques used in a practical Java Card program differ significantly from that used in a Java program. Still, that Java Card uses a precise subset of the Java language speeds up the learning curve, and enables using a Java environment to develop and debug a Java Card program (caveat: even if debugging occurs with Java bytecode, make sure that the class file fits the limitation of Java Card language by converting it to Java Card bytecode; and test in a real Java Card smart card early on to get an idea of the performance); further, one can run and debug both the Java Card code for the application to be embedded in a smart card, and a Java application that will be in the host using the smart card, all working jointly in the same environment.

Java Card 3.0

The version 3.0 of the Java Card specification (draft released in March 2008) is separated in two editions: the Classic Edition and the Connected Edition.

  • The Classic Edition (currently at version 3.0.4 released in September 2011) is an evolution of the Java Card Platform version 2 (which last version 2.2.2 was released in March 2006), which supports traditional card applets on resource-constrained devices such as Smart Cards. Older applets are generally compatible with newer Classic Edition devices, and applets for these newer devices can be compatible with older devices if not referring to new library functions. Smart Cards implementing Java Card Classic Edition have been security-certified by multiple vendors, and are commercially available.
  • The Connected Edition (currently at version 3.0.2 released in December 2009) aims to provide a new virtual machine and an enhanced execution environment with network-oriented features. Applications can be developed as classic card applets requested by APDU commands or as servlets using HTTP to support web-based schemes of communication (HTML, REST, SOAP ...) with the card. The runtime uses a subset of the Java (1.)6 bytecode, without Floating Point; it supports volatile objects (garbage collection), multithreading, inter-application communications facilities, persistence, transactions, card management facilities ...). As of 2014 there has been little adoption in commercially available Smart Cards, so much that reference to Java Card (including in the present WorldHeritage page) often implicitly excludes the Connected Edition.

See also


  1. ^ Ahmed Patel, Kenan Kalajdzic, Laleh Golafshan, Mona Taghavi (2011). "International Journal of Information Security and Privacy" 5 (3). IGI. pp. 1–18. 

External links

  • Java Card overview (Oracle)
  • Defcon 21: The Secret Life of SIM Cards on YouTube
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.