World Library  
Flag as Inappropriate
Email this Article

Kainic acid

Article Id: WHEBN0002669043
Reproduction Date:

Title: Kainic acid  
Author: World Heritage Encyclopedia
Language: English
Subject: Domoic acid, AMPA, Glutamic acid, DNQX, DCPG
Collection: Amino Acids, Convulsants, Kainate Receptor Agonists, Neurotoxins, Pyrrolidines
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Kainic acid

Kainic acid
Stereo, skeletal formula of kainic acid
Names
IUPAC name
(2S,3S,4S)-3-(Carboxymethyl)-4-prop-1-en-2-ylpyrrolidine-2-carboxylic acid
Other names
(3S,4S)-3-(Carboxymethyl)-4-prop-1-en-2-yl-L-proline; 2-Carboxy-3-carboxymethyl-4-isopropenyl-pyrrolidine
Identifiers
 Y
86660
ChEBI  Y
ChEMBL  N
ChemSpider  Y
Jmol-3D images Image
KEGG  N
MeSH
PubChem
UNII  Y
Properties
C10H15NO4
Molar mass 213.23 g·mol−1
Melting point 215 °C (419 °F; 488 K) (decomposes)
log P 0.635
Acidity (pKa) 2.031
Basicity (pKb) 11.966
Structure
Monoclinic
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: Y/N?)

Kainic acid (kainate) is a natural marine acid present in some seaweed. Kainic acid is a potent neuroexcitatory amino acid that acts by activating receptors for glutamate, the principal excitatory neurotransmitter in the central nervous system. Glutamate is produced by the cell’s metabolic processes and there are four major classifications of glutamate receptors: NMDA receptors, AMPA receptors, kainate receptors, and the metabotropic glutamate receptors. Kainic acid is an agonist for kainate receptors, a type of ionotropic glutamate receptor. Kainate receptors likely control a sodium channel that produces excitatory postsynaptic potentials (EPSPs) when glutamate binds.[1]

Kainic acid is commonly injected into laboratory animal models to study the effects of experimental ablation. Kainic acid is a direct agonist of the glutamic kainate receptors and large doses of concentrated solutions produce immediate neuronal death by overstimulating neurons to death. Such damage and death of neurons is referred to as an excitotoxic lesion. Thus, in large, concentrated doses kainic acid can be considered a neurotoxin, and in small doses of dilute solution kainic acid will chemically stimulate neurons.[2]

Electrical stimulation of designated areas of the brain are generally administered by passing an electric current through a wire that is inserted into the brain to lesion a particular area of the brain. Electrical stimulation indiscriminately destroys anything in the vicinity of the electrode tip, including neural bodies and axons of neurons passing through; therefore it is difficult to attribute the effects of the lesion to a single area. Chemical stimulation is typically administered through a cannula that is inserted into the brain via stereotactic surgery. Chemical stimulation, while more complicated than electrical stimulation, has the distinct advantage of activating cell bodies, but not nearby axons, because only cell bodies and subsequent dendrites contain glutamate receptors. Therefore, chemical stimulation by kainic acid is more localized than electrical stimulation. It is important to note that both chemical and electrical lesions potentially cause additional damage to the brain due to the very nature of the inserted electrode or cannula. Therefore, the most effective ablation studies are performed in comparison to a sham lesion that duplicates all the steps of producing a brain lesion except the one that actually causes the brain damage, that is, injection of kainic acid or administration of an electrical shock.

Contents

  • Occurrence 1
  • Pharmacological Activity 2
  • Applications 3
  • See also 4
  • References 5
  • External links 6

Occurrence

Kainic acid was originally isolated from seaweed in 1953.[3] called "Kainin-sou" or "Makuri" in Japan. "Kainin-sou" is used as an anthelmintic in Japan.

Pharmacological Activity

Kainic acid is utilised in primary neuronal cell cultures [4] and acute brain slice preparations [5] to study of the physiological effect of excitotoxicity and assess the neuroprotective capabilities of potential therapeutics.

Kainic acid is a potent central nervous system excitant that is used in epilepsy research to induce seizures in experimental animals, at a typical dose of 10–30 mg/kg in mice. In addition to inducing seizures, kainic acid is excitotoxic and epileptogenic.[6] Kainic acid induces seizures via activation of kainate receptors containing the GluK2 subunit and also through activation of AMPA receptors, for which it serves as a partial agonist.[7] Supply shortages beginning in 2000 have caused the cost of kainic acid to rise significantly.

Applications

See also

References

  1. ^ Carlson, Neil R. Physiology of Behavior. Pearson. p. 121.  
  2. ^ Carlson, Neil R. Physiology of Behavior. Pearson. p. 152.  
  3. ^ Moloney, Mark G. (1998). "Excitatory amino acids". Natural Product Reports 15 (2): 205–219.  
  4. ^ Meade, AJ; Meloni, BP; Mastaglia, FL; Watt, PM; Knuckey, NW (Nov 11, 2010). "AP-1 inhibitory peptides attenuate in vitro cortical neuronal cell death induced by kainic acid.". Brain Research 1360: 8–16.  
  5. ^ Craig, Amanda; Housley, Gary; Fath, Thomas (2014). Modeling excitotoxic ischaemic brain injury of cerebellar Purkinje neurons by intravital and in vitro multi-photon laser scanning microscopy. Springer. pp. 105–128.  
  6. ^ Ben-Ari, Y. Kainate and Temporal Lobe Epilepsies: 3 decades of progress.  
  7. ^ Fritsch B, Reis J, Gasior M, Kaminski RM, Rogawski MA (April 2014). "Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis". Journal of Neuroscience 34 (17): 5765–75.  

External links

  • Kainate Receptors


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.