World Library  
Flag as Inappropriate
Email this Article

Lake Kivu

Lake Kivu
Satellite image of Lake Kivu courtesy of NASA.
Type Rift Valley lakes, Meromictic
Primary outflows Ruzizi River
Catchment area 2,700 km2 (1,000 sq mi)
Basin countries Rwanda, Democratic Republic of the Congo
Max. length 89 km (55 mi)[1]
Max. width 48 km (30 mi)[1]
Surface area 2,700 km2 (1,040 sq mi)[1]
Average depth 240 m (787 ft)
Max. depth 480 m (1,575 ft)
Water volume 500 km3 (120 cu mi)
Surface elevation 1,460 m (4,790 ft)
Islands Idjwi
Settlements Goma, Congo
Bukavu, Congo
Kibuye, Rwanda
Cyangugu, Rwanda
Lake Kivu with Goma in the background

Lake Kivu is one of the African Great Lakes. It lies on the border between the Democratic Republic of the Congo and Rwanda, and is in the Albertine Rift, the western branch of the East African Rift. Lake Kivu empties into the Ruzizi River, which flows southwards into Lake Tanganyika. The name comes from kivu which means "lake" in some Bantu languages, just like the words tanganyika or nyanza.


  • History 1
  • Geography 2
  • Chemistry 3
    • Methane extraction 3.1
  • Biology and fisheries 4
  • See also 5
  • References 6


People on the shore at Gisenyi

The first European to visit the lake was German Count Adolf von Götzen in 1894. Since then it has been caught up in the conflict between Hutu and Tutsi people in Rwanda, and their allies in DR Congo, which led to the 1994 Rwandan Genocide and the First and Second Congo Wars. Lake Kivu gained notoriety as a place where many of the victims of the genocide were dumped.


The lake covers a total surface area of some 2,700 km2 (1,040 sq mi) and stands at a height of 1,460 metres (4,790 ft) above sea level. Some 1 370 km2 or 58% of the lake's waters lie within DRC borders. The lake bed sits upon a rift valley that is slowly being pulled apart, causing volcanic activity in the area, and making it particularly deep: its maximum depth of 480 m (1,575 ft) is ranked eighteenth in the world.

The world's tenth-largest inland island, Idjwi, lies in Lake Kivu, as does the tiny island of Tshegera, which also lies within the boundaries of Virunga National Park; while settlements on its shore include Bukavu, Kabare, Kalehe, Sake, and Goma in Congo, and Gisenyi, Kibuye, and Cyangugu in Rwanda.


Lake Kivu is a fresh water lake and, along with Cameroonian Lake Nyos and Lake Monoun, is one of three that experience limnic eruptions. Around the lake, geologists found evidence of massive biological extinctions about every thousand years, caused by outgassing events. The trigger for lake overturns in Lake Kivu's case is unknown, but volcanic activity is suspected. The gaseous chemical composition of exploding lakes is unique to each lake; in Lake Kivu's case, methane and carbon dioxide due to lake water interaction with a volcano. The amount of methane is estimated to be 65 cubic kilometers (if burnt over one year, it would give an average power of about 100 gigawatts for the whole period). There is also an estimated 256 cubic kilometers of carbon dioxide. The water temperature is 24 °C, and the pH level is about 8.6.[2] The methane is reported to be produced by microbial reduction of the volcanic CO2.[3] The risk from a possible Lake Kivu overturn is catastrophic, dwarfing other documented lake overturns at Lakes Nyos and Monoun, because of the approximately two million people living in the lake basin.

Cores from the Bukavu Bay area of the lake reveal that the bottom has layered deposits of the rare mineral monohydrocalcite interlain with diatoms, on top of sapropelic sediments with high pyrite content. These are found at three different intervals. The sapropelic layers are believed to be related to hydrothermal discharge and the diatoms to a bloom which reduced the carbon dioxide levels low enough to precipitiate monohydrocalcite.[4]

Scientists hypothesize that sufficient volcanic interaction with the lake's bottom water that has high gas concentrations would heat water, force the methane out of the water, spark a methane explosion, and trigger a nearly simultaneous release of carbon dioxide.[5][6] The carbon dioxide would then suffocate large numbers of people in the lake basin as the gases roll off the lake surface. It is also possible that the lake could spawn lake tsunamis as gas explodes out of it.[7][8]

The risk posed by Lake Kivu began to be understood during the analysis of more recent events at Lake Nyos. Lake Kivu's methane was originally thought to be merely a cheap natural resource for export, and for the generation of cheap power. Once the mechanisms that caused lake overturns began to be understood, so did awareness of the risk the lake posed to the local population.

An experimental vent pipe was installed at Lake Nyos in 2001 to remove gas from the deep water, but such a solution for the much larger Lake Kivu would be considerably more expensive. No plan has been initiated to reduce the risk posed by Lake Kivu. The approximately 500 million tonnes of carbon dioxide in the lake is a little under 2 percent of the amount released annually by human fossil fuel burning. Therefore, the process of releasing it could potentially have costs beyond building and operating the system.

Methane extraction

Methane extraction platform.

Lake Kivu has recently been found to contain approximately 55 billion cubic metres (1.94 trillion cubic feet) of dissolved biogas at a depth of 300 metres (1,000 ft). Until 2004, extraction of the gas was done on a small scale, with the extracted gas being used to run boilers at a brewery, the Bralirwa brewery in Gisenyi.[9][10] As far as large-scale exploitation of this resource is concerned, the Rwandan government has negotiated with a number of parties to produce methane from the lake.

In 2011 ContourGlobal, a U.S. based energy company focused on emerging markets, secured project financing to initiate a large-scale methane extraction project. The project will be run through a local Rwandan entity called KivuWatt, using an offshore barge platform to extract, separate, and clean the gasses obtained from the lake bed before pumping purified methane via an underwater pipeline to on-shore gas engines. Stage one of the project aims to build and supply three "gensets" along the lake shore, totaling 25MW of electrical capacity. Initial project operations are scheduled to commence in 2012.[11] In addition to managing gas extraction, KivuWatt will also manage the electrical generation plants and on-sell the electrical power to the Rwandan government under the terms of a long-term Power Purchase Agreement (PPA). This allows KivuWatt to control a vertically integrated energy offering from point of extraction to point of sale into the local grid. Extraction is said to be cost-effective and relatively simple because once the gas-rich water is pumped up, the dissolved gases (primarily carbon dioxide, hydrogen sulphide and methane) begin to bubble out as the water pressure gets lower. This project is expected to increase Rwanda's energy generation capability by as much as 20 times, and will enable Rwanda to sell electricity to neighboring African countries.[10] The firm was awarded the 2011 Africa Power deal of the year for innovation in the financing arrangements it obtained from various sources for the KivuWatt project. [12][13]

This problem associated with the prevalence of methane is that of mazuku, the swahili term "evil wind" for the outgassing of methane and carbon dioxide that kills people and animals, and can even kill vegetation when in high enough concentration.

Biology and fisheries

Fishing boats on Lake Kivu, 2009.
Reflection of the sky on Lake Kivu

The fish fauna in Lake Kivu is relatively poor with 28 species, including four introduced species.[14] The natives are the Lake Rukwa minnow (Raiamas moorii), four species of Barbus (B. altianalis, B. apleurogramma, B. kerstenii and B. pellegrini), an Amphilius catfish, two Clarias catfish (C. liocephalus and C. gariepinus), Nile tilapia (Oreochromis niloticus) and 15 endemic Haplochromis cichlids.[14] The introduced species are three cichlids, the longfin tilapia (Oreochromis macrochir), O. leucostictus and redbreast tilapia (Coptodon rendalli), and a clupeid, the Lake Tanganyika sardine, Limnothrissa miodon.[14]

The exploitable stock of the Lake Tanganyika sardine was estimated at 2000–4000 tons per year.[15] It was introduced to Lake Kivu in the late 1959 by a Belgian Engineer A. Collart. At present, Lake Kivu is the sole natural lake in which L. miodon, a sardine originally restricted to Lake Tanganyika, has been introduced initially to fill an empty niche. Prior to the introduction, no planktivorous fish was present in the pelagic waters of Lake Kivu. In the early 1990s, the number of fishers on the lake was 6,563, of which 3,027 were associated with the pelagic fishery and 3,536 with the traditional fishery. Widespread armed conflict in the surrounding region from the mid-1990s resulted in a decline in the fisheries harvest.[16]

Following this introduction, the sardine has gained substantial economic and nutritional importance for the lakeside human population but from an ecosystem standpoint, the introduction of planktivorous fish may result in important modifications of plankton community structure. Recent observations showed the disappearance during the last decades of a large grazer, Daphnia curvirostris, and the dominance of mesozooplankton community by three species of cyclopoid copepod: Thermocyclops consimilis, Mesocyclops aequatorialis and Tropocyclops confinis.[17][18]

The first comprehensive phytoplankton survey was released in 2006.[19] With an annual average chlorophyll a in the mixed layer of 2.2 mg m-3 and low nutrient levels in the euphotic zone, the lake is clearly oligotrophic. Diatoms are the dominant group in the lake, particularly during the dry season episodes of deep mixing. During the rainy season, the stratified water column, with high light and lower nutrient availability, favour dominance of cyanobacteria with high numbers of phototrophic picoplankton.[19][20][21][22] The actual primary production is 0.71 g C m-2 d-1 (~ 260 g C m-2 y-1).[23]

A study of evolutionary genetics showed that the cichlids from lakes in northern Virunga (e.g., Victoria) would have evolved in a "proto-lake Kivu", much older than the intense volcanic activity (20,000-25,000 years ago) which cut the connection.[24] The elevation of the mountains west of the lake (which is currently the Kahuzi-Biega National Park, one of the largest reserves of eastern lowland (or Grauer's) gorillas in the world), combined with the elevation of the eastern rift (located in eastern Rwanda) would be responsible for drainage of water from central Rwanda in the actual Lake Kivu. This concept of "proto-lake Kivu" was challenged by lack of consistent geological evidence,[25] although the cichlid's molecular clock suggests the existence of a lake much older than the commonly cited 15,000 years.

Lake Kivu is the home of four species of freshwater crab, including two non-endemics (Potamonautes lirrangensis and P. mutandensis) and two endemics (P. bourgaultae and P. idjwiensis).[26] Among Rift Valley lakes, Lake Tanganyika is the only other with endemic freshwater crabs.[26]

See also


  1. ^ a b c Kivu, lake, Congo and Rwanda, Columbia Encyclopedia, Sixth Edition. 2001-05.
  2. ^ Physiochemical characteristics
  3. ^ Anjali Nayar (2009) "A lakeful of trouble." Nature, 460, 321-323.
  4. ^ "Stoffers, P., and Fischbeck, R. (1974) Monohydrocalcite in the sediments of Lake Kivu (East Africa) Sedimentology, 21, 163-170.
  5. ^ Archived Volcano Eruption News: Nyiragongo Volcano Situation Report,, January 22–25, 2002
  6. ^ Halbwachs; et al. (2002-03-09). "Investigations in Lake Kivu (East Central Africa) after the Nyiragongo Eruption of January 2002: Specific study of the impact of the sub-water lava inflow on the lake stability" (pdf). Solidarities. Retrieved 2012-12-21.  mirror
  7. ^ "Killer Lakes", BBC, 4 April 2002
  8. ^ "In the Shadow of Doom", The Walrus, May 2006
  9. ^ "Case Studies : Recovery of Gas from Lake Kivu - The Goats of Rwanda", Added Value Engineering Consultants, accessed 4 May 2007
  10. ^ a b Adam Mynott (May 4, 2007). "Rwanda's Underwater Powerhouse". BBC News. Retrieved 2008-02-05. 
  11. ^ "ContourGlobal". Retrieved 2014-08-26. 
  12. ^ "Methane gas project gets global award". Retrieved 7 March 2012. 
  13. ^ "African power deal of the year 2011 KivuWatt". Retrieved 7 March 2012. 
  14. ^ a b c Snoeks, J; De Vos, L.; Thys van den Audenaerde, D. (1997). "The ichthyogeography of lake Kivu". South African Journal of Science 93: 579–584. 
  15. ^ Marshall, B. E. (1991). "Seasonal and annual variations in the abundance of the clupeid Limnothrissa miodon in lake Kivu". Journal of Fish Biology 39: 641–648.  
  16. ^ Information on Fisheries Management in the Democratic Republic of the Congo, United Nations Food and Agriculture Organization, December 2001
  17. ^ Isumbisho, M (2006). Zooplankton ecology of Lake Kivu (Eastern Africa). Belgium: University of Namur.  
  18. ^ Isumbisho, M.; Sarmento, H.; Kaningini, B.; Micha, J.-C.; Descy, J.-P. (2006). "Zooplankton of Lake Kivu, East Africa, half a century after the Tanganyika sardine introduction" (PDF). Journal of Plankton Research 28 (11): 971–989.  
  19. ^ a b Sarmento, H. (2006). Phytoplankton ecology of Lake Kivu (Eastern Africa) (PDF). Belgium: University of Namur.  
  20. ^ Sarmento, H.; Isumbisho, M; Descy, JP (2006). "Phytoplankton ecology of Lake Kivu (eastern Africa)" (PDF). Journal of Plankton Research 28 (9): 815–829.  
  21. ^ Sarmento, H.; et al. (2008). "Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa" (PDF). Freshwater Biology 53 (4): 756–771.  
  22. ^ Sarmento, H.; et al. (2007). "Species diversity of pelagic algae of Lake Kivu (East Africa)" (PDF). Cryptogamie-Algologie 28 (3): 245:269. 
  23. ^ Sarmento, H.; et al. (2009). "Phytoplankton ecology of Lake Kivu (eastern Africa): biomass, production and elemental ratios" (PDF). International Association of Theoretical and Applied Limnology, Vol 30, Pt 5, Proceedings 30: 709–713. 
  24. ^ Verheyen, E. (2003). "Origin of the Superflock of Cichlid Fishes from Lake Victoria, East Africa". Science 300 (5617): 325–329.  
  25. ^ Stager, J. C. (2003). "Comment on "Origin of the Superflock of Cichlid Fishes from Lake Victoria, East Africa"". Science 304 (5673): 963b–963b.  
  26. ^ a b Cumberlidge, N., and Meyer, K. S. (2011). A revision of the freshwater crabs of Lake Kivu, East Africa. Journal Articles. Paper 30.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.