World Library  
Flag as Inappropriate
Email this Article

Lassa fever

Article Id: WHEBN0000017887
Reproduction Date:

Title: Lassa fever  
Author: World Heritage Encyclopedia
Language: English
Subject: Aniru Conteh, Lujo virus, List of U.S. biological weapons topics, United States biological weapons program, Zoonosis
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Lassa fever

Lassa fever
Classification and external resources
Community education material for Lassa fever
ICD-10 A96.2
ICD-9 078.8
DiseasesDB 7272
MeSH D007835

Lassa fever or Lassa hemorrhagic fever (LHF) is an acute viral hemorrhagic fever caused by the Lassa virus and first described in 1969 in the town of Lassa, in Borno State, Nigeria.[1] Lassa fever is a member of the arenaviridae virus family. Similar to Ebola,[2] clinical cases of the disease had been known for over a decade but had not been connected with a viral pathogen. The infection is endemic in West African countries, resulting in 300,000–500,000 cases annually, causing approximately 5,000 deaths.[3] Outbreaks of the disease have been observed in Nigeria, Liberia, Sierra Leone, Guinea, and the Central African Republic. The primary animal host of the Lassa virus is the Natal Multimammate Mouse (Mastomys natalensis), an animal indigenous to most of Sub-Saharan Africa.[4] The virus is probably transmitted by contact with the feces or urine of animals accessing grain stores in residences.[4] Given its high rate of incidence, Lassa fever is a major problem in the African region.[5][6]

Signs and symptoms

In 80% of cases, the disease is asymptomatic, but in the remaining 20%, it takes a complicated course. It is estimated that the virus is responsible for about 5,000 deaths annually. The fever accounts for up to one third of deaths in hospitals within the affected regions and 10 to 16% of total cases.[7]

After an Non-specific symptoms include fever, facial swelling, and muscle fatigue, as well as conjunctivitis and mucosal bleeding. The other symptoms arising from the affected organs are:

Clinically, Lassa fever infections are difficult to distinguish from other viral hemorrhagic fevers such as Ebola and Marburg, and from more common febrile illnesses such as malaria.

The virus is excreted in urine for three to nine weeks and in semen for three months.

Cause

Mastomys natalensis, the natural reservoir of the Lassa fever virus

Lassa virus is zoonotic (transmitted from animals), in that it spreads to humans from rodents, specifically multi-mammate rats (Mastomys natalensis).[8] This is probably the most common rodent in equatorial Africa, ubiquitous in human households and eaten as a delicacy in some areas.[9] In these rats infection is in a persistent asymptomatic state. The virus is shed in their excreta (urine and feces), which can be aerosolized. In fatal cases, Lassa fever is characterized by impaired or delayed cellular immunity leading to fulminant viremia.

Infection in humans typically occurs by exposure to animal excrement through the respiratory or gastrointestinal tracts. Inhalation of tiny particles of infective material (aerosol) is believed to be the most significant means of exposure. It is possible to acquire the infection through broken skin or mucous membranes that are directly exposed to infective material. Transmission from person to person has also been established, presenting a disease risk for healthcare workers. Frequency of transmission via sexual contact has not been established.

Diagnosis

There is a range of laboratory investigations that are performed to diagnose the disease and assess its course and complications. ELISA test for antigen and IgM antibodies gives 88% sensitivity and 90% specificity for the presence of the infection. Other laboratory findings in Lassa fever include lymphopenia (low white blood cell count), thrombocytopenia (low platelets), and elevated aspartate aminotransferase (AST) levels in the blood. Lassa fever can also be found in cerebrospinal fluid.[10] In West Africa, where Lassa is most prevalent, it is difficult for doctors to diagnose due to the absence of proper equipment to perform tests.[11] In cases with abdominal pain, diagnoses in endemic countries are often made for other illnesses, such as appendicitis and intussusception, delaying treatment with Ribavirin.[12]

Prevention

Community education material for Lassa fever

Control of the Mastomys rodent population is impractical, so measures are limited to keeping rodents out of homes and food supplies, as well as maintaining effective personal hygiene. Gloves, masks, laboratory coats, and goggles are advised while in contact with an infected person. These issues in many countries are monitored by a department of public health. In less developed countries these types of organizations may not have the necessary means to effectively control outbreaks.

Researchers at the USAMRIID facility, where military biologists study infectious diseases, have a promising vaccine candidate.[13] They have developed a replication-competent vaccine against Lassa virus based on recombinant vesicular stomatitis virus vectors expressing the Lassa virus glycoprotein. After a single intramuscular injection, test primates have survived lethal challenge, while showing no clinical symptoms.[14]

Treatment

All persons suspected of Lassa fever infection should be admitted to isolation facilities and their body fluids and excreta properly disposed of.

Early and aggressive treatment using Ribavirin was pioneered by Joe McCormick in 1979. After extensive testing, it was determined that early administration is critical to success. Additionally, Ribavirin is almost twice as effective when given intravenously as when taken by mouth.[15] Ribavirin is a prodrug which appears to interfere with viral replication by inhibiting RNA-dependent nucleic acid synthesis, although the precise mechanism of action is disputed.[16] The drug is relatively inexpensive, but the cost of the drug is still very high for many of those in West African states. Fluid replacement, blood transfusion and fighting hypotension are usually required. Intravenous interferon therapy has also been used.

When Lassa fever infects pregnant women late in their third trimester, it is necessary to induce delivery for the mother to have a good chance of survival.[17] This is because the virus has an affinity for the placenta and other highly vascular tissues. The fetus has only a one in ten chance of survival no matter what course of action is taken; hence focus is always on saving the life of the mother. Following delivery, women should receive the same treatment as other Lassa fever patients.

SIGA Technologies is developing an antiviral drug that has been shown effective in treating experimentally infected guinea pigs. In a study conducted at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), treatment with ST-193 once a day for 14 days resulted in significant reduction in mortality (71% of the animals survived at the low dose), whereas all untreated animals and those treated with ribavirin died within 20 days of the infection.Due to threat of disease being used as a potential military weapon, a vaccine to reverse the disease is still being worked on.[18]

As serious as the disease is, there are numerous accounts of survival. However, there have been lasting effects of the disease.[19]

Prognosis

About 15%-20% of hospitalized Lassa fever patients will die from the illness. It is estimated that the overall mortality rate is 1%, however during epidemics mortality can climb as high as 50%. The mortality rate is greater than 80% when it occurs in pregnant women during their third trimester; fetal death also occurs in nearly all those cases. Abortion decreases the risk of death to the mother.[20]

Thanks to treatment with Ribavirin, fatality rates are continuing to decline. Work on a vaccine is continuing, with multiple approaches showing positive results in animal trials.

Epidemiology

The dissemination of the infection can be assessed by prevalence of antibodies to the virus in populations of:

  • Sierra Leone 8–52%
  • Guinea 4–55%
  • Nigeria approx. 21%

Lassa fever is a viral hemorrhagic fever in West Africa.[21] Studies show up to half a million cases of Lassa fever per year in West Africa, with about 5,000 resulting in death.[22] Lassa virus was detected in 25 of 60 (42%) patients in northern and central Edo State.[23] The Lassa Virus affects adults and children alike.[23]

Like other hemorrhagic fevers, Lassa fever can be transmitted directly from one human to another. It can be contracted by an airborne route or with direct contact with infected human blood, urine, or semen. Transmission through breast milk has also been observed.

See also

References

  1. ^ Frame JD, Baldwin JM, Gocke DJ, Troup JM (1 July 1970). "Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings". Am. J. Trop. Med. Hyg. 19 (4): 670–6.  
  2. ^ Donaldson, Ross. The Lassa Ward. New York:St.Martin's Press, 2009
  3. ^ Ogbu O, Ajuluchukwu E, Uneke CJ (2007). "Lassa fever in West African sub-region: an overview". Journal of vector borne diseases 44 (1): 1–11.  
  4. ^ a b Werner, Dietrich, editor (2004). Biological Resources and Migration. Springer. p. 363.  
  5. ^ McCormick, Joseph (1987). "A Prospective Study of the Epidemiology and Ecology of Lassa Fever". The Journal of Infectious Diseases 155: 437.  
  6. ^ Yun, N. E.; Walker, D. H. (2012). "Pathogenesis of Lassa Fever". Viruses 4 (12): 2031–2048.  
  7. ^ Centers for Disease Control and Prevention, "Lassa Fever"
  8. ^ Richmond, J. K.; Baglole, D. J. (2003). "Lassa fever: Epidemiology, clinical features, and social consequences". BMJ 327 (7426): 1271–1275.  
  9. ^ Richmond, J. K.; Baglole, D. J. (2003). "Lassa fever: Epidemiology, clinical features, and social consequences". BMJ 327 (7426): 1271–1275.  
  10. ^ Günther, S.; Weisner, B.; Roth, A.; Grewing, T.; Asper, M.; Drosten, C.; Emmerich, P.; Petersen, J.; Wilczek, M.; Schmitz, H. (2001). "Lassa Fever Encephalopathy: Lassa Virus in Cerebrospinal Fluid but Not in Serum". The Journal of Infectious Diseases 184 (3): 345–349.  
  11. ^ Asogun, D. A.; Adomeh, D. I.; Ehimuan, J.; Odia, I.; Hass, M.; Gabriel, M.; Olschläger, S.; Becker-Ziaja, B.; Folarin, O.; Phelan, E.; Ehiane, P. E.; Ifeh, V. E.; Uyigue, E. A.; Oladapo, Y. T.; Muoebonam, E. B.; Osunde, O.; Dongo, A.; Okokhere, P. O.; Okogbenin, S. A.; Momoh, M.; Alikah, S. O.; Akhuemokhan, O. C.; Imomeh, P.; Odike, M. A.; Gire, S.; Andersen, K.; Sabeti, P. C.; Happi, C. T.; Akpede, G. O.; Günther, S. (2012). Bausch, Daniel G, ed. "Molecular Diagnostics for Lassa Fever at Irrua Specialist Teaching Hospital, Nigeria: Lessons Learnt from Two Years of Laboratory Operation". PLoS Neglected Tropical Diseases 6 (9): e1839.  
  12. ^ Dongo, A. E.; Kesieme, E. B.; Iyamu, C. E.; Okokhere, P. O.; Akhuemokhan, O. C.; Akpede, G. O. (2013). "Lassa fever presenting as acute abdomen: a case series". Virology Journal 10: 124.  
  13. ^  
  14. ^ Geisbert TW, Jones S, Fritz EA et al. (2005). "Development of a New Vaccine for the Prevention of Lassa Fever". PLoS Med. 2 (6): e183.  
  15. ^ Fisher-Hoch SP, McCormick JB (2004). "Lassa fever vaccine". Expert review of vaccines 3 (2): 189–97.  
  16. ^ Crotty S, Cameron C, Andino R (2002). "Ribavirin's antiviral mechanism of action: lethal mutagenesis?". J. Mol. Med. 80 (2): 86–95.  
  17. ^ Price ME, Fisher-Hoch SP, Craven RB, McCormick JB (September 1988). "A prospective study of maternal and fetal outcome in acute Lassa fever infection during pregnancy". BMJ 297 (6648): 584–7.  
  18. ^ (Press release) http://www.drugs.com/clinical_trials/siga-passes-first-hurdle-lassa-fever-antiviral-st-193-860.html. 
  19. ^ Emond, R. T.; Bannister, B.; Lloyd, G.; Southee, T. J.; Bowen, E. T. (1982). "A case of Lassa fever: Clinical and virological findings". British medical journal (Clinical research ed.) 285 (6347): 1001–1002.  
  20. ^ Centers for Disease Control and Prevention, "Lassa Fever, Signs and Symptoms"
  21. ^ Asogun, D. A.; Adomeh, D. I.; Ehimuan, J.; Odia, I.; Hass, M.; Gabriel, M.; Olschläger, S.; Becker-Ziaja, B.; Folarin, O.; Phelan, E.; Ehiane, P. E.; Ifeh, V. E.; Uyigue, E. A.; Oladapo, Y. T.; Muoebonam, E. B.; Osunde, O.; Dongo, A.; Okokhere, P. O.; Okogbenin, S. A.; Momoh, M.; Alikah, S. O.; Akhuemokhan, O. C.; Imomeh, P.; Odike, M. A.; Gire, S.; Andersen, K.; Sabeti, P. C.; Happi, C. T.; Akpede, G. O.; Günther, S. (2012). Bausch, Daniel G, ed. "Molecular Diagnostics for Lassa Fever at Irrua Specialist Teaching Hospital, Nigeria: Lessons Learnt from Two Years of Laboratory Operation". PLoS Neglected Tropical Diseases 6 (9): e1839.  
  22. ^ "Lassa fever". Health Topics A to Z. World Health Organization. Retrieved 2 August 2011. 
  23. ^ a b Ehichioya, D. U.; Asogun, D. A.; Ehimuan, J.; Okokhere, P. O.; Pahlmann, M.; Ölschläger, S.; Becker-Ziaja, B.; Günther, S.; Omilabu, S. A. (2012). "Hospital-based surveillance for Lassa fever in Edo State, Nigeria, 2005-2008". Tropical Medicine & International Health 17 (8): 1001–1004.  
  • Garrett, Laurie. The coming plague: newly emerging diseases in a world out of balance. New York: Farrar, Straus and Giroux, 1994. Print. Call Number: RA651 .G37
  • Lashley, Felissa R., and Jerry D. Durham. Emerging infectious diseases: trends and issues. New York: Springer Pub., 2002. Print. Call Number: RA643 .E465
  • http://crisisboom.com/2011/02/16/biodefense-lassa-fever/
  • R. T. D. Emond, Barbara Bannister, G. Lloyd, T. J. Southee and E. T. W. Bowen. A Case Of Lassa Fever: Clinical And Virological Findings. British Medical Journal (Clinical Research Edition), Vol. 285, No. 6347 (Oct. 9, 1982), pp. 1001–1002

External links

  • WHO factsheet
  • CDC info—viral fevers
  • Health Protection Agency - viral haemorrhagic fevers
  • Merlin
  • Map
  • http://wwwnc.cdc.gov/eid/article/12/12/06-0812_article.htm
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.