World Library  
Flag as Inappropriate
Email this Article

Lava tube

Article Id: WHEBN0000663355
Reproduction Date:

Title: Lava tube  
Author: World Heritage Encyclopedia
Language: English
Subject: Chain of Craters Road, Undara Volcanic National Park, Mount Eccles National Park, Kīlauea, Piula Cave Pool
Collection: Cave Geology, Lava Tubes, Volcanic Landforms, Volcanology
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Lava tube

Valentine Cave in Lava Beds National Monument, California. This shows the classic tube shape and the curbs on the wall mark former flow levels.
Thurston Lava Tube in Hawaii Volcanoes National Park, Hawaii. The step mark, more visible on the right wall, indicates the depth at which the lava flowed for a period of time.
A rare characteristic of lava tubes are lava pillars. This is the Manjanggul lava pillar located in the Manjanggul lava tubes on the island of Jeju-do, Korea.
Lavacicles on the ceiling of Mushpot Cave in Lava Beds National Monument
Close-up of a skylight on coastal plain, with lava stalactites forming on the roof of the tube. Hawaii Volcanoes National Park.

A lava tube is a natural conduit formed by flowing lava which moves beneath the hardened surface of a lava flow. Tubes can be actively draining lava from a volcano during an eruption, or can be extinct, meaning the lava flow has ceased and the rock has cooled and left a long, cave-like channel.

Contents

  • Formation 1
  • Characteristics 2
  • Extraterrestrial lava tubes 3
  • Examples 4
  • See also 5
  • Notes 6

Formation

Lava tubes are a type of lava cave formed when an active low-viscosity lava flow develops a continuous and hard crust, which thickens and forms a roof above the still-flowing lava stream. Tubes form in one of two ways: by the crusting over of lava channels, and from pāhoehoe flows where the lava is moving under the surface.[1]

Lava usually leaves the point of eruption in channels. These channels tend to stay very hot as their surroundings cool. This means they slowly develop walls around them as the surrounding lava cools and/or as the channel melts its way deeper. These channels can get deep enough to crust over, forming an insulating tube that keeps the lava molten and serves as a conduit for the flowing lava. These types of lava tubes tend to be closer to the lava eruption point.

Further away from the eruption point, lava can flow in an unchanneled, fanlike manner as it leaves its source, which is usually another lava tube leading back to the eruption point. Called pāhoehoe flows, these areas of surface-moving lava cool, forming either a smooth or rough, ropy surface. The lava continues to flow this way until it begins to block its source. At this point, the subsurface lava is still hot enough to break out at a point, and from this point the lava begins as a new "source". Lava flows from the previous source to this breakout point as the surrounding lava of the pāhoehoe flow cools. This forms an underground channel that becomes a lava tube.[2]

Characteristics

A broad lava-flow field often consists of a main lava tube and a series of smaller tubes that supply lava to the front of one or more separate flows. When the supply of lava stops at the end of an eruption or lava is diverted elsewhere, lava in the tube system drains downslope and leaves partially empty cave-like conduits beneath the ground.

Such drained tubes commonly exhibit step marks on their walls that mark the various depths at which the lava flowed, known as flow ledges or flow lines depending on how prominently they protrude from the walls. Lava tubes generally have pāhoehoe floors, although this may often be covered in breakdown from the ceiling. A variety of speleothems may be found in lava tubes[3] including a variety of stalactite forms generally known as lavacicles, which can be of the splash, shark tooth, or tubular variety. Lavacicles are the most common of lava tube speleothems. Drip stalagmites may form under tubular lava stalactites, and the latter may grade into a form known as a tubular lava helictite. A runner is a bead of lava that extrudes from a small opening and then runs down a wall. Lava tubes may also contain mineral deposits that most commonly take the form of crusts or small crystals, and less commonly, as stalactites and stalagmites.

Lava tubes can be up to 14–15 metres (46–49 ft) wide, though are often narrower, and run anywhere from 1–15 metres (3 ft 3 in–49 ft 3 in) below the surface. Lava tubes can also be extremely long; one tube from the Mauna Loa 1859 flow enters the ocean about 50 kilometers (31 mi) from its eruption point, and the Cueva del Viento - Sobrado system on Teide, Tenerife island, is over 18 kilometers (11 mi) long, due to extensive braided maze areas at the upper zones of the system.

A lava tube system in Kiama, Australia, consists of over 20 tubes, many of which are breakouts of a main lava tube. The largest of these lava tubes is 2 meters (6.6 ft) in diameter and has columnar jointing due to the large cooling surface. Other tubes have concentric and radial jointing features. The tubes are infilled due to the low slope angle of emplacement.

Extraterrestrial lava tubes

Lunar lava tubes have been discovered[4] and have been studied as possible human habitats, providing natural shielding from radiation. [5]

Martian lava tubes are associated with innumerable lava flows and lava channels on the flanks of Olympus Mons. Partially collapsed lava tubes are visible as chains of pit craters, and broad lava fans formed by lava emerging from intact, subsurface tubes are also common.[6]

Examples

See also

Notes

  1. ^ "Lava tube". Photo glossary of volcano terms.  
  2. ^ The Virtual Lava Tube Large educational site on lava tube features and how they form, with many photos
  3. ^ Bunnell, D. (2008). Caves of Fire:Inside America's Lava Tubes. National Speleological Society, Huntsville, AL.  
  4. ^ Handwerk, Brian (October 26, 2009), First Moon "Skylight" Found -- Could House Lunar Base?, National Geographic, retrieved 2011-01-27 
  5. ^ "Lunar Lava Tubes Radiation Safety Analysis". Division for Planetary Sciences 2001 meeting.  
  6. ^ Richardson, J.W. et al. (2009). The Relationship between Lava Fans and Tubes on Olympus Mons in the Tharsis Region, Mars. 40th Lunar and Planetary Science Conference, Abstract #1527. http://www.lpi.usra.edu/meetings/lpsc2009/pdf/1527.pdf.
  7. ^ "Surtshellir-Stefánshellir system". Caves of Iceland. Showcaves. Retrieved 2007-08-07. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.