World Library  
Flag as Inappropriate
Email this Article

List of most massive stars known

Article Id: WHEBN0001956052
Reproduction Date:

Title: List of most massive stars known  
Author: World Heritage Encyclopedia
Language: English
Subject: Lists of superlatives in astronomy, Lists of stars, NGC 3603, List of hottest known stars
Publisher: World Heritage Encyclopedia

List of most massive stars known

This is a list of the most-massive stars so far discovered, in solar masses (M).


  • Uncertainties and caveats 1
  • Relevance of stellar evolution 2
  • List of the most massive stars 3
  • Black holes 4
  • Eddington's size limit 5
  • See also 6
  • References 7
  • External links 8

Uncertainties and caveats

Most of the masses listed below are contested and, being the subject of current research, remain under review and subject to revision. Indeed, many of the masses listed in the table below are inferred from theory, using difficult measurements of the stars’ temperatures and absolute brightnesses. All the listed masses are uncertain: both the theory and the measurements are pushing the limits of current knowledge and technology. Either measurement or theory, or both, could be incorrect. For example, VV Cephei could be between 25–40 M, or 100 M, depending on which property of the star is examined.

Artist's impression of disc of obscuring material around a massive star.

Massive stars are rare; astronomers must look very far from the Earth to find one. All the listed stars are many thousands of light years away and that alone makes measurements difficult. In addition to being far away, many stars of such extreme mass are surrounded by clouds of outflowing gas; the surrounding gas interferes with the already difficult-to-obtain measurements of stellar temperatures and brightnesses and greatly complicates the issue of estimating internal chemical compositions. For some methods, different determinations of chemical composition lead to different estimates of mass. In addition, the clouds of gas make it difficult to judge whether the star is just a single supermassive object or, instead, a multiple star system. A number of the "stars" listed below may actually consist of two or more companions in close orbit, each star being massive in itself but not necessarily supermassive. Other combinations are possible – for example a supermassive star with one or more smaller companions or more than one giant star. Without being able to see inside the surrounding cloud, it is difficult to know the truth of the matter. More globally, statistics on stellar populations seem to indicate that the upper mass limit is in the 100-200 solar mass range.

Amongst the most reliable listed masses are those for the eclipsing binaries NGC 3603-A1, WR21a, and WR20a, which were obtained from orbital measurements. Indeed, for a binary star, it is possible to measure the individual masses of the two stars by studying their orbital motions, using Kepler's laws of planetary motion. This involves measuring their radial velocities and also their light curves. The radial velocities only yield minimum values for the masses, depending on inclination, but lightcurves of eclipsing binaries provide the missing information, inclination. Therefore, the masses of eclipsing binaries are the sole ones to be derived with some accuracy. The list below lists however also masses derived by indirect methods, not only those derived for eclipsing systems.

Relevance of stellar evolution

Some stars may once have been heavier than they are today. It is likely that many have lost tens of solar masses of material in the process of degassing, or in sub-supernova and supernova impostor explosion events.

There are also – or rather were – stars that might have appeared on the list but no longer exist as stars. Today we see only the debris (see for example hypernovae and supernova remnant). The masses of the precursor stars that fueled these cataclysms can be estimated from the type of explosion and the energy released, but those masses are not listed here.

List of the most massive stars

A few known stars with an estimated mass of 25 or greater M, including the stars of Arches cluster, Cygnus OB2 cluster, Pismis 24 cluster and R136 cluster. Note that all O-stars have masses > 15 M and catalogs of such stars (GOSS, Reed) contain hundreds of cases. Masses quoted below are their current (evolutionary) mass, not their initial (formation) mass. The list is very far from complete, especially below 80 M - although the majority of stars thought to be more than 100 M are shown. Method is provided to get an idea of uncertainty - direct methods (binarity) being more secure than indirect ones (conversion form luminosity, extrapolation from atmosphere models,...).

The R136 cluster
Star name Mass
(M, Sun = 1)
Method Refs.
R136a1  265 Luminosity/Atmosphere model
BAT99-98 226 Luminosity/Atmosphere model [1]
R136a2  179 Luminosity/Atmosphere model [1]
η Carinae A 120-(170-200) Luminosity/Binary [2]
HD 15558 >152 ± 51 Binary [3][4]
VFTS 682  150 Luminosity/Atmosphere model [5]
LH 10-3209 A 140 ? [6]
NGC 3603-B  132 ± 13 Luminosity/Atmosphere model [7]
R136c  >130 Luminosity/Atmosphere model [1]
R136a3  130 Luminosity/Atmosphere model [1]
HD 269810   130 Luminosity/Atmosphere model [8]
P871 130 ? [6]
WR 42e 125–135 Ejection in triple system [9][1]
Arches-F9  111–131 Luminosity/Atmosphere model [10]
NGC 3603-A1a  120 Eclipsing binary [7]
BAT99-119 (R145) 120 Binary [11][2]
R136b  118 Luminosity/Atmosphere model [1]
NGC 3603-C 113 ± 10 Luminosity/Atmosphere model [7]
Melnick 42 113 Luminosity/Atmosphere model [1]
Cygnus OB2-12  110 Luminosity/Atmosphere model [12]
WR 25 110 Binary?
Arches-F1  101–119 Luminosity/Atmosphere model [10]
Arches-F6  101–119 Luminosity/Atmosphere model [10]
BAT99-33 (R99) 103 Luminosity/Atmosphere model [1]
Peony Star 100 Luminosity/Atmosphere model? [13]
Cygnus OB2 #516 100 Luminosity?
R136a in LMC About 10 other stars between 80 and 200.   Luminosity/Atmosphere model [1]
Sk -68°137 99 ? [6]
HD 93129 A  95 Luminosity/Atmosphere model [14]
HST-42 95 ? [6]
P1311 94 ? [6]
Sk -66°172 94 ? [6]
Arches-F7  86–102 Luminosity/Atmosphere model [10]
NGC 3603-A1b  92 Eclipsing binary [7]
HST-A3 91 ? [6]
HD 38282 B >90 Luminosity [15]
Cygnus OB2 #771 90 Luminosity/Atmosphere model?
Arches-F15  80–97 Luminosity/Atmosphere model [10]
WR21a A >87 ± 6 Binary [16]
HD 93250  86.83 Luminosity/Atmosphere model [14]
LH 10-3061 85 ? [6]
WR20a A 82.7 ± 5.5 Eclipsing binary [17]
MACHO 05:34-69:31 82 ? [6]
WR20a B  81.9 ± 5.5 Eclipsing binary [17]
NGC 346-3 81 ? [6]
HD 38282 A >80 Luminosity [15]
Sk -71 51 80 Luminosity [18]
Cygnus OB2-8B 80 Luminosity?
WR 148 80 ? [19]
HD 97950 80 ?

A few additional examples with masses lower than 80 M.

Star name Mass
(M, Sun = 1)
R139 A 78 [20]
V429 Carinae A 78
WR 22 78
Pismis 24-17 78 [21]
Cygnus OB2-11 73+32
Arches-F12 70–82
P1163 75 [6]
Arches-F18 67–82
Var 83 in M33 60–85
LH 64-16 72 [6]
Arches-F4 66–76
Arches-F28 66–76
R126 70
Companion to M33 X-7 70 [23]
AG Carinae 70
BD+43° 3654 70
HD 46150 69
HD 93205 69 [6]
BI 253 69 [6]
HD 5980 A 58–79
MH 36 66 [6]
LH 114-7 66 [6]
LBV 1806-20 A + B A=65, B=65
HD 46223 63 [6]
HDE 303308 63 [6]
HD 64568 63 [6]
LH 10-3058 63 [6]
LH54-425 A 62
Arches-F21 56–70
Arches-F10 55–69
HD 148937 60 [24]
Arches-F14 54–65
HD 5980 B 51–67
HD 93128 59
S Monocerotis 59
WR 102ea 58 [25]
Arches-F3 52–63
CD Crucis A 57 [26]
Arches-B1 50–60
Plaskett's star B 56
η Carinae B 30-80 Luminosity/Binary [2]
HD 93204 55 [6]
BD+40° 4210 54
Plaskett's star A 54
WR21a B 53 ± 4 [16]
HD 93129 B 53 [27]
Cygnus OB2-4 52
Arches-F20 47–57
WR 47 51 [19]
Arches-F16 46–56
WR102c 45–55 [13]
CD Crucis B 48 [26]
Arches-F8 43–51
Sher 25 in NGC 3603 40–52
Arches-F2 42–49
HD 15558 45 ± 11 [3][4]
S Doradus 45
WR 141 45 [19]
IRS-8* 44.5 [28]
Cygnus OB2-8A A 44.1
Cygnus OB2-1 44
α Camelopardalis 43
Pismis 24-2 43
χ2 Orionis 42.3
Cygnus OB2-8C 42.2±14 [22]
Cygnus OB2-6 42
Cygnus OB2-10 43.1±14 [22]
ε Orionis 40
RW Cephei 40
θ1 Orionis C 40
Cygnus OB2-7  39.7+17
ζ Puppis 22.5–56.6
Companion to NGC 300 X-1 38 [29]
Pismis 24-16 38
Pismis 24-25 38
Cygnus OB2-8A B 37.4
LH54-425 B 37
ζ1 Scorpii 36
Pismis 24-13 35
Companion to IC 10 X-1[30] 35
Cygnus OB2-9 A >34
Arches-F5 31–36
Cygnus OB2-18 33
ζ Orionis 33
19 Cephei 30–35
ξ Persei 26–36
Cygnus OB2-5 A 31
Cygnus OB2-9 B >30
γ Velorum A 30
P Cygni 30
VFTS 352 A=28.63 ± 0.3, B=28.85 ± 0.3 [31]
The Pistol Star 27.5
IRS 15[32] 26
BAT99–129 25 ± 2 [33]
6 Cassiopeiae 25 [34]
Pismis 24-3 25
KY Cygni 25
NGC 7538 S 25 [35]
VFTS 102 25
ρ Cassiopeiae 14–30
Wolf-Rayet star
Luminous blue variable star
O-class star
B-class star
  1. ^ This unusual measurement was made by assuming the star was ejected from a three-body encounter in NGC 3603. This assumption also means that the current star is the result of a merger between two original close binary components. The mass is consistent with evolutionary mass for a star with the observed parameters.
  2. ^ These are minimum values with the orbital solution still uncertain.

Black holes

Black holes are the end point evolution of massive stars. Technically they are not stars, as they no longer generate heat and light via nuclear fusion in their cores.

Eddington's size limit

The limit on mass arises because stars of greater mass have a higher rate of core energy generation, their luminosity increasing far out of proportion to their mass. For a sufficiently massive star the outward pressure of radiant energy generated by nuclear fusion in the star’s core exceeds the inward pull of its own gravity. This is called the Eddington limit. Beyond this limit, a star ought to push itself apart, or at least shed enough mass to reduce its internal energy generation to a lower, maintainable rate. In theory, a more massive star could not hold itself together, because of the mass loss resulting from the outflow of stellar material. In practice the theoretical Eddington Limit must be modified for high luminosity stars and the empirical Humphreys Davidson Limit is derived.[36]

Astronomers have long theorized that as a protostar grows to a size beyond 120 M, something drastic must happen. Although the limit can be stretched for very early Population III stars, and the exact value is uncertain, if any stars still exist above 150-200 M, they would challenge current theories of stellar evolution. Studying the Arches cluster, which is the densest known cluster of stars in our galaxy, astronomers have confirmed that stars in that cluster do not occur any larger than about 150 M. One theory to explain rare ultramassive stars that exceed this limit, for example in the R136 star cluster, is the collision and merger of two massive stars in a close binary system.[37]

See also


  1. ^ a b c d e f g h Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf-Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics 565: A27.  
  2. ^ a b Kashi, A.; Soker, N. (2010). "Periastron Passage Triggering of the 19th Century Eruptions of Eta Carinae". The Astrophysical Journal 723: 602.  
  3. ^ a b De Becker, M.; Rauw, G.; Manfroid, J.; Eenens, P. (2006). "Early-type stars in the young open cluster IC 1805". Astronomy and Astrophysics 456 (3): 1121–1130.  
  4. ^ a b Garmany, C. D.; Massey, P. (1981). "HD 15558 - an extremely luminous O-type binary star". Astronomical Society of the Pacific 93: 500.  
  5. ^ Bestenlehner, J. M.; Vink, J. S.; Gräfener, G.; Najarro, F.; Evans, C. J.; Bastian, N.; Bonanos, A. Z.; Bressert, E.; Crowther, P. A.; Doran, E.; Friedrich, K.; Hénault-Brunet, V.; Herrero, A.; De Koter, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Sana, H.; Soszynski, I.; Taylor, W. D. (2011). "The VLT-FLAMES Tarantula Survey". Astronomy & Astrophysics 530: L14.  
  6. ^ a b c d e f g h i j k l m n o p q r s t u Walborn, Nolan R.; Howarth, Ian D.; Lennon, Daniel J.; Massey, Philip; Oey, M. S.; Moffat, Anthony F. J.; Skalkowski, Gwen; Morrell, Nidia I.; Drissen, Laurent; Parker, Joel Wm. (2002). "A New Spectral Classification System for the Earliest O Stars: Definition of Type O2". The Astronomical Journal 123 (5): 2754.  
  7. ^ a b c d Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit".  
  8. ^ Evans, C. J.; Walborn, N. R.; Crowther, P. A.; Hénault-Brunet, V.; Massa, D.; Taylor, W. D.; Howarth, I. D.; Sana, H.; Lennon, D. J.; Van Loon, J. T. (2010). "A Massive Runaway Star from 30 Doradus". The Astrophysical Journal 715 (2): L74.  
  9. ^ Gvaramadze; Kniazev; Chene; Schnurr (2012). "Two massive stars possibly ejected from NGC 3603 via a three-body encounter". Monthly Notices of the Royal Astronomical Society: Letters 430: L20.  
  10. ^ a b c d e Gräfener, G.; Vink, J. S.; De Koter, A.; Langer, N. (2011). "The Eddington factor as the key to understand the winds of the most massive stars". Astronomy & Astrophysics 535: A56.  
  11. ^ Chene, A. N.; Schnurr, O.; Crowther, P. A.; Lajus, E. F.; Moffat, F. J. (2006). "Very massive binaries in R136". Astronomy & Astrophysics 456: 497–498.  
  12. ^ Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics 541: A145.  
  13. ^ a b Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics 486 (3): 971–984.  
  14. ^ a b Repolust, T.; Puls, J.; Herrero, A. (2004). "Stellar and wind parameters of Galactic O-stars. The influence of line-blocking/blanketing". Astronomy and Astrophysics 415 (1): 349–376.  
  15. ^ a b Sana, H.; Van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; De Koter, A.; Kaper, L.; Moffat, A. F. J.; Schnurr, O.; Schneider, F. R. N.; Gies, D. R. (2013). "R144 revealed as a double-lined spectroscopic binary". Monthly Notices of the Royal Astronomical Society: Letters 432: 26.  
  16. ^ a b Niemela, V. S.; Gamen, R. C.; Barbá, R. H.; Fernández Lajús, E.; Benaglia, P.; Solivella, G. R.; Reig, P.; Coe, M. J. (2008). "The very massive X-ray bright binary system Wack 2134 (= WR 21a)". Monthly Notices of the Royal Astronomical Society 389 (3): 1447–1452.  
  17. ^ a b Rauw, G.; Crowther, P. A.; De Becker, M.; Gosset, E.; Naz�, Y.; Sana, H.; Van Der Hucht, K. A.; Vreux, J. -M.; Williams, P. M. (2005). "The spectrum of the very massive binary system WR?20a (WN6ha + WN6ha): Fundamental parameters and wind interactions". Astronomy and Astrophysics 432 (3): 985–998.  
  18. ^ Meynadier, F.; Heydari-Malayeri, M.; Walborn, N. R. (2005). "The LMC H II region N 214C and its peculiar nebular blob". Astronomy and Astrophysics 436: 117–126.  
  19. ^ a b c "The Evolution of the Milky Way". Astrophysics and Space Science Library 255. 2000.  
  20. ^ Taylor, W. D.; Evans, C. J.; Sana, H.; Walborn, N. R.; De Mink, S. E.; Stroud, V. E.; Alvarez-Candal, A.; Barbá, R. H.; Bestenlehner, J. M.; Bonanos, A. Z.; Brott, I.; Crowther, P. A.; De Koter, A.; Friedrich, K.; Gräfener, G.; Hénault-Brunet, V.; Herrero, A.; Kaper, L.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Morrell, N.; Monaco, L.; Vink, J. S. (2011). "The VLT-FLAMES Tarantula Survey". Astronomy & Astrophysics 530: L10.  
  21. ^ Fang, M.; Van Boekel, R.; King, R. R.; Henning, T.; Bouwman, J.; Doi, Y.; Okamoto, Y. K.; Roccatagliata, V.; Sicilia-Aguilar, A. (2012). "Star formation and disk properties in Pismis 24". Astronomy & Astrophysics 539: A119.  
  22. ^ a b c d Herrero, A.; Puls, J.; Najarro, F. (2002). "Fundamental parameters of Galactic luminous OB stars VI. Temperatures, masses and WLR of Cyg OB2 supergiants". Astronomy and Astrophysics 396 (3): 949–966.  
  23. ^ Orosz, J. A.; McClintock, J. E.; Narayan, R.; Bailyn, C. D.; Hartman, J. D.; Macri, L.; Liu, J.; Pietsch, W.; Remillard, R. A.; Shporer, A.; Mazeh, T. (2007). "A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33". Nature 449 (7164): 872–875.  
  24. ^ Wade, G. A.; Grunhut, J.; Gräfener, G.; Howarth, I. D.; Martins, F.; Petit, V.; Vink, J. S.; Bagnulo, S.; Folsom, C. P.; Nazé, Y.; Walborn, N. R.; Townsend, R. H. D.; Evans, C. J. (2012). "The spectral variability and magnetic field characteristics of the Of?p star HD 148937★". Monthly Notices of the Royal Astronomical Society 419 (3): 2459–2471.  
  25. ^ Adriane Liermann et all (2011). "High-mass stars in the Galactic center Quintuplet cluster". Bulletin de la Societe Royale des Sciences de Liege 80: 160–164.  
  26. ^ a b Bhatt, H.; Pandey, J. C.; Kumar, B.; Singh, K. P.; Sagar, R. (2010). "X-ray emission characteristics of two Wolf-Rayet binaries: V444 Cyg and CD Cru". Monthly Notices of the Royal Astronomical Society 402 (3): 1767–1779.  
  27. ^ Vink, J. S.; Davies, B.; Harries, T. J.; Oudmaijer, R. D.; Walborn, N. R. (2009). "On the presence and absence of disks around O-type stars". Astronomy and Astrophysics 505 (2): 743–753.  
  28. ^ Geballe, T. R.; Najarro, F.; Rigaut, F.; Roy, J. ‐R. (2006). "TheK‐Band Spectrum of the Hot Star in IRS 8: An Outsider in the Galactic Center?". The Astrophysical Journal 652: 370–375.  
  29. ^ Paul A Crowther; Carpano; Hadfield; Pollock (2007). "On the optical counterpart of NGC300 X-1 and the global Wolf-Rayet content of NGC300". Astronomy and Astrophysics 469 (31): L31.  
  30. ^ Bulik, T.; Belczynski, K.; Prestwich, A. (2011). "Ic10 X-1/ngc300 X-1: The Very Immediate Progenitors of Bh-Bh Binaries". The Astrophysical Journal 730 (2): 140.  
  31. ^ Almeida, L. A.; Sana, H.; de Mink, S. E.; et al. (13 October 2015). "DISCOVERY OF THE MASSIVE OVERCONTACT BINARY VFTS 352: EVIDENCE FOR ENHANCED INTERNAL MIXING". The Astrophysical Journal 812 (2). Retrieved 2015-10-21. 
  32. ^ Chini, R.; Hoffmeister, V. H.; Nielbock, M.; Scheyda, C. M.; Steinacker, J.; Siebenmorgen, R.; Nürnberger, D. (2006). "A Remnant Disk around a Young Massive Star". The Astrophysical Journal 645: L61.  
  33. ^ Antokhin, I.I.; Cherepashchuk, A.M. (2007). "Eclipsing Binary System WN3(h)+O5V BAT99-129: Analysis of the MACHO Light Curve and the Parameters of the Components". Astronomy and Astrophysics 463: 196.  
  34. ^ Achmad, L.; Lamers, H. J. G. L. M.; Pasquini, L. (1997). "Radiation driven wind models for A, F and G supergiants". Astronomy and Astrophysics 320: 196.  
  35. ^ Moscadelli, L.; Goddi, C. (2014). "A multiple system of high-mass YSOs surrounded by disks in NGC 7538 IRS1". Astronomy & Astrophysics 566: A150.  
  36. ^ Ulmer, A.; Fitzpatrick, E. L. (1998). "Revisiting the Modified Eddington Limit for Massive Stars". The Astrophysical Journal 504: 200–206.  
  37. ^ Banerjee, S.; Kroupa, P.; Oh, S. (2012). "The emergence of super-canonical stars in R136-type starburst clusters". Monthly Notices of the Royal Astronomical Society 426 (2): 1416–1426.  

External links

  • Statistics in Arches cluster
  • Most Massive Star Discovered
  • Arches cluster
  • How Heavy Can a Star Get?
  • LBV 1806-20
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.