World Library  
Flag as Inappropriate
Email this Article

MAP sensor

 

MAP sensor

The manifold absolute pressure sensor (MAP sensor) is one of the sensors used in an internal combustion engine's electronic control system.

Engines that use a MAP sensor are typically fuel injected. The manifold absolute pressure sensor provides instantaneous manifold pressure information to the engine's electronic control unit (ECU). The data is used to calculate air density and determine the engine's air mass flow rate, which in turn determines the required fuel metering for optimum combustion (see stoichiometry) and influence the advance or retard of ignition timing. A fuel-injected engine may alternately use a mass airflow sensor (MAF sensor) to detect the intake airflow. A typical naturally aspirated engine configuration employs one or the other, whereas forced induction engines typically use both; a MAF sensor on the intake tract pre-turbo and a MAP sensor on the charge pipe leading to the throttle body.

MAP sensor data can be converted to air mass data using the speed-density method. Engine speed (RPM) and air temperature are also necessary to complete the speed-density calculation. The MAP sensor can also be used in OBD II (on-board diagnostics) applications to test the EGR (exhaust gas recirculation) valve for functionality, an application typical in OBD II equipped General Motors engines.

Contents

  • Example 1
  • Vacuum comparison 2
  • EGR testing 3
  • Common confusion with boost sensors and gauges 4
  • See also 5
  • External links 6

Example

The following example assumes the same engine speed and air temperature.

  • Condition 1:
An engine operating at wide open throttle (WOT) on top of a very high mountain has a manifold pressure of about 50 kPa (essentially equal to the barometer at that high altitude).
  • Condition 2:
The same engine at sea level will achieve 50 kPa (7.25 psi, 14.7 inHG) of manifold pressure at less than WOT due to the higher barometric pressure.

The engine requires the same mass of fuel in both conditions because the mass of air entering the cylinders is the same.

If the throttle is opened all the way in condition 2, the manifold absolute pressure will increase from 50 kPa to nearly 100 kPa (14.5 psi, 29.53 inHG), about equal to the local barometer, which in condition 2 is sea level. The higher absolute pressure in the intake manifold increases the air's density, and in turn more fuel can be burned resulting in higher output.

Another example is varying rpm and engine loads -

Where an engine may have 60kPa of manifold pressure at 1800 rpm in an unloaded condition, introducing load with a further throttle opening will change the final manifold pressure to 100kPa, engine will still be at 1800 rpm but its loading will require a different spark and fueling delivery.

Vacuum comparison

Engine vacuum is the difference between the pressures in the intake manifold and ambient atmospheric pressure. Engine vacuum is a "gauge" pressure, since gauges by nature measure a pressure difference, not an absolute pressure. The engine fundamentally responds to air mass, not vacuum, and absolute pressure is necessary to calculate mass. The mass of air entering the engine is directly proportional to the air density, which is proportional to the absolute pressure, and inversely proportional to the absolute temperature.

Note: Carburetors are largely dependent on air volume flow and vacuum, and neither directly infers mass. Consequently, carburetors are precise, but not accurate fuel metering devices. Carburetors were replaced by more accurate fuel metering methods, such as fuel injection in combination with an air mass flow sensor (MAF).

EGR testing

With OBD II standards, vehicle manufacturers were required to test the exhaust gas recirculation (EGR) valve for functionality during driving. Some manufacturers use the MaP sensor to accomplish this. In these vehicles, they have a MAF sensor for their primary load sensor. The MaP sensor is then used for rationality checks and to test the EGR valve. The way they do this is during a deceleration of the vehicle when there is low absolute pressure in the intake manifold (i.e., a high vacuum present in the intake manifold relative to the outside air) the powertrain control module (PCM) will open the EGR valve and then monitor the MaP sensor's values. If the EGR is functioning properly, the manifold absolute pressure will increase as exhaust gases enter.

Common confusion with boost sensors and gauges

MaP sensors measure absolute pressure. Boost sensors or gauges measure the amount of pressure above a set absolute pressure. That set absolute pressure is usually 100 kPa. This is commonly referred to as gauge pressure. Boost pressure is relative to absolute pressure - as one increases or decreases, so does the other. It is a one-to-one relationship with an offset of -100 kPa for boost pressure. Thus a MaP sensor will always read 100 kPa more than a boost sensor measuring the same conditions. A MaP sensor will never display a negative reading because it is measuring absolute pressure, where zero is the total absence of pressure (it is possible to have conditions where negative absolute pressure can be observed, but none of those conditions occur in the air intake of an internal combustion engine). Boost sensors can display negative readings, indicating vacuum or suction (a condition of lower pressure than the surrounding atmosphere). In forced induction engines (supercharged or turbocharged), a negative boost reading indicates that the engine is drawing air faster than it is being supplied, creating suction. This is often called vacuum pressure when referring to internal combustion engines.

In short: most boost sensors will read 100 kPa less than a MaP sensor reads. One can convert boost to MaP by adding 100 kPa. One can convert from MaP to boost by subtracting 100 kPa.

See also

External links

  • MaP sensor
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.