World Library  
Flag as Inappropriate
Email this Article

Material properties (thermodynamics)

Article Id: WHEBN0003396016
Reproduction Date:

Title: Material properties (thermodynamics)  
Author: World Heritage Encyclopedia
Language: English
Subject: Adiabatic process, Conjugate variables (thermodynamics), Endoreversible thermodynamics, Entropy, Equilibrium thermodynamics
Collection: Thermodynamic Properties
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Material properties (thermodynamics)

The thermodynamic properties of materials are intensive thermodynamic parameters which are specific to a given material. Each is directly related to a second order differential of a thermodynamic potential. Examples for a simple 1-component system are:

  • Isothermal compressibility
\beta_T=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_T \quad = -\frac{1}{V}\,\frac{\partial^2 G}{\partial P^2}
  • Adiabatic compressibility
\beta_S=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_S \quad = -\frac{1}{V}\,\frac{\partial^2 H}{\partial P^2}
  • Specific heat at constant pressure
c_P=\frac{T}{N}\left(\frac{\partial S}{\partial T}\right)_P \quad = -\frac{T}{N}\,\frac{\partial^2 G}{\partial T^2}
  • Specific heat at constant volume
c_V=\frac{T}{N}\left(\frac{\partial S}{\partial T}\right)_V \quad = -\frac{T}{N}\,\frac{\partial^2 A}{\partial T^2}
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_P \quad = \frac{1}{V}\,\frac{\partial^2 G}{\partial P\partial T}

where P  is pressure, V  is volume, T  is temperature, S  is entropy, and N  is the number of particles.

For a single component system, only three second derivatives are needed in order to derive all others, and so only three material properties are needed to derive all others. For a single component system, the "standard" three parameters are the isothermal compressibility \beta_T, the specific heat at constant pressure c_P, and the coefficient of thermal expansion \alpha.

For example, the following equations are true:

c_P=c_V+\frac{TV\alpha^2}{N\beta_T}
\beta_T=\beta_S+\frac{TV\alpha^2}{Nc_P}

The three "standard" properties are in fact the three possible second derivatives of the Gibbs free energy with respect to temperature and pressure.

Sources

The Dortmund Data Bank is a factual data bank for thermodynamic and thermophysical data.

See thermodynamic databases for pure substances.

References

 


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.