World Library  
Flag as Inappropriate
Email this Article

Neptunium-239

Article Id: WHEBN0004145223
Reproduction Date:

Title: Neptunium-239  
Author: World Heritage Encyclopedia
Language: English
Subject: Transuranium element, Plutonium-239
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Neptunium-239

Actinides and fission products by half-life
Actinides[1] by decay chain Half-life
range (a)
Fission products by yield[2]
4n 4n+1 4n+2 4n+3
4.5–7% 0.04–1.25% <0.001%
228Ra 4–6 155Euþ
244Cm 241Puƒ 250Cf 227Ac 10–29 90Sr 85Kr 113mCdþ
232Uƒ 238Pu 243Cmƒ 29–97 137Cs 151Smþ 121mSn
249Cfƒ 242mAmƒ 141–351

No fission products
have a half-life
in the range of
100–210k years…

241Am 251Cfƒ[3] 430–900
226Ra 247Bk 1.3k–1.6k
240Pu 229Th 246Cm 243Am 4.7k–7.4k
245Cmƒ 250Cm 8.3k–8.5k
239Puƒ 24.1k
230Th 231Pa 32k–76k
236Npƒ 233Uƒ 234U 150k–250k 99Tc 126Sn
248Cm 242Pu 327k–375k 79Se
1.53M 93Zr
237Np 2.1M–6.5M 135Cs 107Pd
236U 247Cmƒ 15M–24M 129I
244Pu 80M

...nor beyond 15.7M[4]

232Th 238U 235Uƒ№ 0.7G–14G

Legend for superscript symbols
₡  has thermal neutron capture cross section in the range of 8–50 barns
ƒ  fissile
metastable isomer
№  naturally occurring radioactive material (NORM)
þ  neutron poison (thermal neutron capture cross section greater than 3k barns)
†  range 4a–97a: Medium-lived fission product
‡  over 200ka: Long-lived fission product

Neptunium (Np) is an artificial element, and thus a standard atomic mass cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 239Np in 1940, produced by bombarding 238U with neutrons to produce 239U, which then underwent beta decay to 239Np.

Trace quantities are found in nature from neutron capture by uranium atoms.

Twenty neptunium radioisotopes have been characterized, with the most stable being 237Np with a half-life of 2.14 million years, 236Np with a half-life of 154,000 years, and 235Np with a half-life of 396.1 days. All of the remaining radioactive isotopes have half-lives that are less than 4.5 days, and the majority of these have half-lives that are less than 50 minutes. This element also has 4 meta states, with the most stable being 236mNp (t½ 22.5 hours).

The isotopes of neptunium range in atomic weight from 225.0339 u (225Np) to 244.068 u (244Np). The primary decay mode before the most stable isotope, 237Np, is electron capture (with a good deal of alpha emission), and the primary mode after is beta emission. The primary decay products before 237Np are isotopes of uranium and protactinium, and the primary products after are isotopes of plutonium.

Some notable isotopes

Neptunium-235

Neptunium-235 has 142 neutrons and a half-life of 400 days. This isotope of Neptunium either decays by:

This particular isotope of neptunium has a weight of 235.0440633 grams/mole.

Neptunium-236

Neptunium-236 has 143 neutrons and a half-life of 154,000 years. It can decay by the following methods -

This particular isotope of neptunium has a mass of 236.04657 grams/mole. It is a fissile material with a critical mass of 6.79 kg.[5]

236Np is produced in small quantities via the (n,2n) and (γ,n) capture reactions of 237Np,[6] however it is nearly impossible to separate in any significant quantities from its parent 237Np.[7] It is for this reason that, despite its low critical mass and high neutron cross section, it has not been researched as a nuclear fuel in weapons or reactors.

Neptunium-237

237Np decays via the neptunium series to bismuth and thallium, unlike most other actinides which decay to isotopes of lead.

237Np was recently shown to be capable of sustaining a chain reaction with fast neutrons, as in a nuclear weapon.[8] However, it has a low probability of fission on bombardment with thermal neutrons, which makes it unsuitable as a fuel for conventional nuclear power plants (as opposed to accelerator-driven systems, etc.).

237Np is the only neptunium isotope produced in significant quantity in the nuclear fuel cycle, both by successive neutron capture by uranium-235 (which fissions most but not all of the time) and uranium-236, or (n,2n) reactions where a fast neutron occasionally knocks a neutron loose from uranium-238 or isotopes of plutonium. Over the long term, 237Np also forms in spent nuclear fuel as the decay product of americium-241.

237Np is projected to be one of the most mobile nuclides at the Yucca Mountain nuclear waste repository.

Use in plutonium-238 production

When exposed to neutron bombardment 237Np can capture a neutron and become 238Pu, this product being useful as an thermal energy source for the production of electricity in deep space probes and, of recent note, the Mars Science Laboratory (Curiosity rover). These applications are economically practical where photovoltaic power sources are weak or inconsistent.

Table

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life decay
mode(s)[9][n 1]
daughter
isotope(s)
nuclear
spin
excitation energy
225Np 93 132 225.03391(8) 3# ms [>2 µs] α 221Pa 9/2-#
226Np 93 133 226.03515(10)# 35(10) ms α 222Pa
227Np 93 134 227.03496(8) 510(60) ms α (99.95%) 223Pa 5/2-#
β+ (.05%) 227U
228Np 93 135 228.03618(21)# 61.4(14) s β+ (59%) 228U
α (41%) 224Pa
β+, SF (.012%) (various)
229Np 93 136 229.03626(9) 4.0(2) min α (51%) 225Pa 5/2+#
β+ (49%) 229U
230Np 93 137 230.03783(6) 4.6(3) min β+ (97%) 230U
α (3%) 226Pa
231Np 93 138 231.03825(5) 48.8(2) min β+ (98%) 231U (5/2)(+#)
α (2%) 227Pa
232Np 93 139 232.04011(11)# 14.7(3) min β+ (99.99%) 232U (4+)
α (.003%) 228Pa
233Np 93 140 233.04074(5) 36.2(1) min β+ (99.99%) 233U (5/2+)
α (.001%) 229Pa
234Np 93 141 234.042895(9) 4.4(1) d β+ 234U (0+)
235Np 93 142 235.0440633(21) 396.1(12) d EC 235U 5/2+
α (.0026%) 231Pa
236Np 93 143 236.04657(5) 1.54(6)×105 a EC (87.3%) 236U (6-)
β- (12.5%) 236Pu
α (.16%) 232Pa
236mNp 60(50) keV 22.5(4) h EC (52%) 236U 1
β- (48%) 236Pu
237Np[n 2][n 3] 93 144 237.0481734(20) 2.144(7)×106 a α 233Pa 5/2+
SF (2×10−10%) (various)
CD (4×10−12%) 207Tl
30Mg
238Np 93 145 238.0509464(20) 2.117(2) d β- 238Pu 2+
238mNp 2300(200)# keV 112(39) ns
239Np 93 146 239.0529390(22) 2.356(3) d β- 239Pu 5/2+
240Np 93 147 240.056162(16) 61.9(2) min β- 240Pu (5+)
240mNp 20(15) keV 7.22(2) min β- (99.89%) 240Pu 1(+)
IT (.11%) 240Np
241Np 93 148 241.05825(8) 13.9(2) min β- 241Pu (5/2+)
242Np 93 149 242.06164(21) 2.2(2) min β- 242Pu (1+)
242mNp 0(50)# keV 5.5(1) min 6+#
243Np 93 150 243.06428(3)# 1.85(15) min β- 243Pu (5/2-)
244Np 93 151 244.06785(32)# 2.29(16) min β- 244Pu (7-)

Notes

  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC which use expanded uncertainties.

References

  • Isotope masses from:
  • Isotopic compositions and standard atomic masses from:
  • Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.


Isotopes of uranium Isotopes of neptunium Isotopes of plutonium
Table of nuclides
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.