World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0019201815
Reproduction Date:

Title: Plasmodesmata  
Author: World Heritage Encyclopedia
Language: English
Subject: Extracellular matrix
Publisher: World Heritage Encyclopedia


Plasmodesmata (singular: plasmodesma) are microscopic channels which traverse the cell walls of plant cells[2][3] and some algal cells, enabling transport and communication between them. Plasmodesmata evolved independently in several lineages,[4] and species that have these structures include members of the Charophyceae, Charales, Coleochaetales and Phaeophyceae (which are all algae), as well as all embryophytes, better known as land plants.[5] Unlike animal cells, every plant cell is surrounded by a polysaccharide cell wall. Neighbouring plant cells are therefore separated by a pair of cell walls and the intervening lamella, forming an extracellular domain known as the apoplast. Although cell walls are permeable to small soluble proteins and other solutes, plasmodesmata enable direct, regulated, symplastic intercellular transport of substances between cells. There are two forms of plasmodesmata: primary plasmodesmata, which are formed during cell division, and secondary plasmodesmata, which can form between mature cells.[6]

Similar structures, called gap junctions[7] and membrane nanotubes, interconnect animal cells[8] and stromules form between plastids in plant cells.[9]


Plasmodesmata are formed when portions of the endoplasmic reticulum are trapped across the middle lamella as new cell wall is laid down between two newly divided plant cells and these eventually become the cytoplasmic connections between cells (primary plasmodesmata). Here the wall is not thickened further, and depressions or thin areas known as pits are formed in the walls. Pits normally pair up between adjacent cells. Alternatively, plasmodesmata can be inserted into existing cell walls between non-dividing cells (secondary plasmodesmata)[10]


Plasmodesmatal plasma membrane

A typical plant cell may have between 103 and 105 plasmodesmata connecting it with adjacent cells[11] equating to between 1 and 10 per µm2.[12] Plasmodesmata are approximately 50-60 nm in diameter at the midpoint and are constructed of three main layers, the plasma membrane, the cytoplasmic sleeve, and the desmotubule.[11] They can transverse cell walls that are up to 90 nm thick.[12]

The plasma membrane portion of the plasmodesma is a continuous extension of the cell membrane or plasmalemma [13] It is similar in structure to the cellular phospholipid bilayers.

Cytoplasmic sleeve

The cytoplasmic sleeve is a fluid-filled space enclosed by the plasmalemma and a continuous extension of the cytosol. Trafficking of molecules and ions through plasmodesmata occurs through this passage. Smaller molecules (e.g. sugars and amino acids) and ions can easily pass through plasmodesmata by diffusion without the need for additional chemical energy. Larger molecules, including proteins (for example Green fluorescent protein) and RNA, can also pass through the cytoplasmic sleeve diffusively.[14] Plasmodesmal transport of some larger molecules is facilitated by unknown mechanisms. One main mechanism of regulation of plasmodesmal transport is the accumulation of the polysaccharide callose accumulates around the neck region of plasmodesmata to form a collar, reducing their diameter and thereby controlling permeability to substances in the cytoplasm.[13]


The desmotubule is a tube of appressed endoplasmic reticulum that runs between two adjacent cells [15] Some molecules are known to be transported through this channel,[16] but it is not thought to be the main route for plasmodesmatal transport.

Around the desmotubule and the plasma membrane areas of an electron dense material have been seen, often joined together by spoke-like structures that seem to split the plasmodesma into smaller channels [15] These structures may be composed of myosin[17][18][19] and actin,[18][20] which are part of the cell's cytoskeleton. If this is the case these proteins could be used in the selective transport of large molecules between the two cells.


Plasmodesmata have been shown to transport proteins (including transcription factors), short interfering RNA, messenger RNA and viral genomes from cell to cell. One example of a viral movement proteins is the tobacco mosaic virus MP-30. MP-30 is thought to bind to the virus's own genome and shuttle it from infected cells to uninfected cells through plasmodesmata.[14] Flowering Locus T protein moves from leaves to the shoot apical meristem through plasmodesmata to initiate flowering.[21]

The size of molecules that can pass through plasmodesmata is determined by the size exclusion limit. This limit is highly variable and can is subject to active modification.[6] MP-30 is able to increase the size exclusion limit from 700 Daltons to 9400 Daltons thereby aiding its movement through a plant.[22]

Several models for possible active transport through plasmodesmata exist. It has been suggested that such transport is mediated by interactions with proteins localized on the desmotubule, and/or by chaperones partially unfolding proteins, allowing them to fit through the narrow passage. A similar mechanism may be involved in transporting viral nucleic acids through the plasmodesmata.[23]

See also


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.