World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0003234313
Reproduction Date:

Title: Poly(3,4-ethylenedioxythiophene)  
Author: World Heritage Encyclopedia
Language: English
Subject: Conductive polymer, Glossary of fuel cell terms, Transparent conducting film, Fuel cell, Conductive polymers
Collection: Conductive Polymers, Organic Polymers, Organic Semiconductors, Transparent Electrodes
Publisher: World Heritage Encyclopedia



Poly(3,4-ethylenedioxythiophene) or PEDOT (or sometimes PEDT) is a conducting polymer based on 3,4-ethylenedioxythiophene or EDOT monomer. Advantages of this polymer are optical transparency in its conducting state, high stability and moderate band gap and low redox potential. A large disadvantage is poor solubility which is partly circumvented in the PEDOT:PSS composite, and the PEDOT-TMA material. (Note: Pedot is a transparent conductor. These conductors are used for LCDs and solar cells, among others.)

In the field of electroanalysis,

External links

  1. ^ Bello, A; Giannetto, M; Mori, G; Seeber, R; Terzi, F; Zanardi, C (2007). "Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes". Sensors and Actuators B: Chemical 121 (2): 430.  
  2. ^ Kumar, S. Senthil; Mathiyarasu, J.; Phani, K. L. N.; Yegnaraman, V. (2005). "Simultaneous determination of dopamine and ascorbic acid on poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode". Journal of Solid State Electrochemistry 10 (11): 905.  
  3. ^ Zhang, Xinyu; MacDiarmid, Alan G.; Manohar, Sanjeev K. (2005). "Chemical synthesis of PEDOT nanofibers". Chemical Communications (42): 5328–30.  
  4. ^ Electrically conducting cation-exchange polymer powders: synthesis, characterization and applications in pem fuel cells and supercapacitors
  5. ^ High rates of oxygen reduction over a vapor phase–polymerized PEDOT electrode
  6. ^ 2008 - Cathodes in fuel cells


2008 - Monash University, Melbourne - Cathodes in fuel cells[4][5][6]
Renato Seeber group, University of Modena and Reggio Emilia, Italy


In one study [3] PEDOT nanofibers are produced from vanadium pentoxide nanofibers by a nanofiber seeding method. In this procedure EDOT is dissolved in an aqueous solution of camphorsulfonic acid (CSA) and a vanadium pentoxide nanofiber sol-gel and radical cationic polymerization is initiated by addition of ammonium persulfate. The resulting polymer precipitates from solution and has a general composition (PEDOT)(CSA)0.11-(HSO4)0.12(Cl)0.11(H2O)0.19. Washing with dilute hydrochloric acid removes the vanadium compound. The presence of the vanadium pentoxide seeds make the difference between the formation of PEDOT nanofibers (100 to 180 nanometer diameter and one to several micrometres long) and the formation of a more conventional granular morphology. When applied to a solid substrate such as PET, PEDOT non-woven films have slightly less optical transparency and about half the conductance of commercial PEDOT:PSS / PET films.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.