World Library  
Flag as Inappropriate
Email this Article

Potassium-aggravated myotonia

Article Id: WHEBN0010739474
Reproduction Date:

Title: Potassium-aggravated myotonia  
Author: World Heritage Encyclopedia
Language: English
Subject: Channelopathy, Erythrokeratodermia variabilis, Clouston's hidrotic ectodermal dysplasia, Progressive symmetric erythrokeratodermia, Spinocerebellar ataxia type-13
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Potassium-aggravated myotonia

Potassium-aggravated myotonia
Classification and external resources
OMIM 608390

Potassium-aggravated myotonia is a rare genetic disorder that affects skeletal muscle. Beginning in childhood or adolescence, people with this condition experience bouts of sustained muscle tensing (myotonia) that prevent muscles from relaxing normally. Myotonia causes muscle stiffness, often painful, that worsens after exercise and may be aggravated by eating potassium-rich foods such as bananas and potatoes. Stiffness occurs in skeletal muscles throughout the body. Potassium-aggravated myotonia ranges in severity from mild episodes of muscle stiffness to severe, disabling disease with frequent attacks. Potassium-aggravated myotonia may, in some cases, also cause paradoxical myotonia, in which myotonia becomes more severe at the time of movement instead of after movement has ceased. Unlike some other forms of myotonia, potassium-aggravated myotonia is not associated with episodes of muscle weakness.

Mutations in the SCN4A gene cause potassium-aggravated myotonia. The SCN4A gene provides instructions for making a protein that is critical for the normal function of skeletal muscle cells. For the body to move normally, skeletal muscles contract and relax in a coordinated way. Muscle contractions are triggered by the flow of positively charged ions, including sodium, into skeletal muscle cells. The SCN4A protein forms channels that control the flow of sodium ions into these cells. Mutations in the SCN4A gene alter the usual structure and function of sodium channels. The altered channels cannot properly regulate ion flow, increasing the movement of sodium ions into skeletal muscle cells. The influx of extra sodium ions triggers prolonged muscle contractions, which are the hallmark of myotonia.

Potassium-aggravated myotonia is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits a mutation in the SCN4A gene from one affected parent. Other cases result from new mutations in the gene. These cases occur in people with no history of the disorder in their family.

References

  • U.S. National Library of Medicine. Potassium-aggravated myotonia
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.