World Library  
Flag as Inappropriate
Email this Article

Predicate (mathematical logic)

Article Id: WHEBN0000285109
Reproduction Date:

Title: Predicate (mathematical logic)  
Author: World Heritage Encyclopedia
Language: English
Subject: Mathematical logic, Quantifier (logic), Propositional calculus, Predicate logic, History of mathematical notation
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Predicate (mathematical logic)

In mathematics, a predicate is commonly understood to be a Boolean-valued function P: X→ {true, false}, called the predicate on X. However, predicates have many different uses and interpretations in mathematics and logic, and their precise definition, meaning and use will vary from theory to theory. So, for example, when a theory defines the concept of a relation, then a predicate is simply the characteristic function or the indicator function of a relation. However, not all theories have relations, or are founded on set theory, and so one must be careful with the proper definition and semantic interpretation of a predicate.

Simplified overview

Informally, a predicate is a statement that may be true or false depending on the values of its variables.[1] It can be thought of as an operator or function that returns a value that is either true or false.[2] For example, predicates are sometimes used to indicate set membership: when talking about sets, it is sometimes inconvenient or impossible to describe a set by listing all of its elements. Thus, a predicate P(x) will be true or false, depending on whether x belongs to a set.

Predicates are also commonly used to talk about the properties of objects, by defining the set of all objects that have some property in common. So, for example, when P is a predicate on X, one might sometimes say P is a property of X. Similarly, the notation P(x) is used to denote a sentence or statement P concerning the variable object x. The set defined by P(x) is written as {x | P(x)}, and is just a collection of all the objects for which P is true.

For instance, {x | x is a positive integer less than 4} is the set {1,2,3}.

If t is an element of the set {x | P(x)}, then the statement P(t) is true.

Here, P(x) is referred to as the predicate, and x the subject of the proposition. Sometimes, P(x) is also called a propositional function, as each choice of x produces a proposition.

Formal definition

The precise semantic interpretation of an atomic formula and an atomic sentence will vary from theory to theory.

See also

References

  1. ^ Cunningham, Daniel W. (2012). A Logical Introduction to Proof. New York: Springer. p. 29.  
  2. ^ Haas, Guy M. "What If? (Predicates)". Introduction to Computer Programming. Berkeley Foundation for Opportunities in IT (BFOIT),. Retrieved 20 July 2013. 
  3. ^ Lavrov, Igor Andreevich and Larisa Maksimova (2003). Problems in Set Theory, Mathematical Logic, and the Theory of Algorithms. New York: Springer. p. 52.  

External links

  • Introduction to predicates
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.