World Library  
Flag as Inappropriate
Email this Article

Protein tyrosine phosphatase

Article Id: WHEBN0003295742
Reproduction Date:

Title: Protein tyrosine phosphatase  
Author: World Heritage Encyclopedia
Language: English
Subject: PTEN (gene), Noonan syndrome, GTP-binding protein regulators, R.EcoRII, Myotonic dystrophy
Collection: Ec 3.1.3
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Protein tyrosine phosphatase

Protein-tyrosine-phosphatase
Identifiers
EC number 3.1.3.48
CAS number 79747-53-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum

Protein tyrosine phosphatases are a group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on proteins. Protein tyrosine (pTyr) phosphorylation is a common post-translational modification that can create novel recognition motifs for protein interactions and cellular localization, affect protein stability, and regulate enzyme activity. As a consequence, maintaining an appropriate level of protein tyrosine phosphorylation is essential for many cellular functions. Tyrosine-specific protein phosphatases (PTPase; EC 3.1.3.48) catalyse the removal of a phosphate group attached to a tyrosine residue, using a cysteinyl-phosphate enzyme intermediate. These enzymes are key regulatory components in signal transduction pathways (such as the MAP kinase pathway) and cell cycle control, and are important in the control of cell growth, proliferation, differentiation, transformation, and synaptic strengthening.[1][2][3][4]

Contents

  • Functions 1
  • Classification 2
    • By mechanism 2.1
      • Class I 2.1.1
      • Class II 2.1.2
      • Class III 2.1.3
      • Class IV 2.1.4
    • By location 2.2
    • Common elements 2.3
  • Expression pattern 3
  • References 4
  • Sources 5
  • External links 6

Functions

Together with tyrosine kinases, PTPs regulate the phosphorylation state of many important signalling molecules, such as the MAP kinase family. PTPs are increasingly viewed as integral components of signal transduction cascades, despite less study and understanding compared to tyrosine kinases.

PTPs have been implicated in regulation of many cellular processes, including, but not limited to:

Classification

By mechanism

The PTP superfamily can be divided into four subfamilies.[6][7]

Links to all 107 members of the protein tyrosine phosphatase family can be found in the at the bottom of this article.

Class I

The class I PTPs, are the largest group of PTPs with 99 members, which can be further subdivided into

Dual-specificity phosphatases (dTyr and dSer/dThr) dual-specificity protein-tyrosine phosphatases. Ser/Thr and Tyr dual-specificity phosphatases are a group of enzymes with both Ser/Thr (EC 3.1.3.16) and tyrosine-specific protein phosphatase (EC 3.1.3.48) activity able to remove the serine/threonine or the tyrosine-bound phosphate group from a wide range of phosphoproteins, including a number of enzymes that have been phosphorylated under the action of a kinase. Dual-specificity protein phosphatases (DSPs) regulate mitogenic signal transduction and control the cell cycle.

LEOPARD syndrome, Noonan syndrome, and Metachondromatosis are associated with PTPN11.

Elevated levels of activated PTPN5 negatively affects synaptic stability and plays a role in Alzheimer’s disease,[3] Fragile X Syndrome[4] schizophrenia,[8] and Parkinson’s disease.[9] Decreased levels of PTPN5 has been implicated in Huntington's disease,[10][11] cerebral ischemia[12] alcohol abuse,[13][14] and stress disorders.[15][16] Together these findings indicate that only at optimal levels of PTPN5 is synaptic function unimpaired.

Class II

LMW (low-molecular-weight) phosphatases, or acid phosphatases, act on tyrosine phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates.[17][18]

The class II PTPs contain only one member, low-molecular-weight phosphotyrosine phosphatase (LMPTP).

Class III

Cdc25 phosphatases (dTyr and/or dThr)

The Class III PTPs contains three members, CDC25 A, B, and C

Class IV

pTyr-specific phosphatases

The class IV PTPs contains four members, Eya1-4.

This class is believed to have evolved separately from the other three.[19]

By location

Based on their cellular localization, PTPases are also classified as:

Common elements

All PTPases carry the highly conserved active site motif C(X)5R (PTP signature motif), employ a common catalytic mechanism, and possess a similar core structure made of a central parallel beta-sheet with flanking alpha-helices containing a beta-loop-alpha-loop that encompasses the PTP signature motif.[22] Functional diversity between PTPases is endowed by regulatory domains and subunits.

Low-molecular-weight phosphotyrosine protein phosphatase
Structure of a low-molecular-weight phosphotyrosine protein phosphatase.[23]
Identifiers
Symbol LMWPc
Pfam PF01451
InterPro IPR017867
SMART SM00226
SCOP 1phr
SUPERFAMILY 1phr
Protein-tyrosine phosphatase
Structure of Yersinia protein tyrosine phosphatase.[24]
Identifiers
Symbol Y_phosphatase
Pfam PF00102
Pfam clan CL0031
InterPro IPR000242
SMART SM00194
PROSITE PS50055
SCOP 1ypt
SUPERFAMILY 1ypt
Dual-specificity phosphatase, catalytic domain
Structure of the dual-specificity protein phosphatase VHR.[25]
Identifiers
Symbol DSPc
Pfam PF00782
Pfam clan CL0031
InterPro IPR000340
PROSITE PDOC00323
SCOP 1vhr
SUPERFAMILY 1vhr
Protein-tyrosine phosphatase, SIW14-like
Structure of a putative phosphoprotein phosphatase from Arabidopsis thaliana.[26]
Identifiers
Symbol Y_phosphatase2
Pfam PF03162
Pfam clan CL0031
InterPro IPR004861
Protein-tyrosine phosphatase-like, PTPLA
Identifiers
Symbol PTPLA
Pfam PF04387
InterPro IPR007482

Expression pattern

Individual PTPs may be expressed by all cell types, or their expression may be strictly tissue-specific. Most cells express 30% to 60% of all the PTPs, however hematopoietic and neuronal cells express a higher number of PTPs in comparison to other cell types. T cells and B cells of hematopoietic origin express around 60 to 70 different PTPs. The expression of several PTPS is restricted to hematopoietic cells, for example, LYP, SHP1, CD45, and HePTP.[27] The expression of PTPN5 is restricted to the brain. Differential expression of PTPN5 is found in many brain regions, with no expression in the cerebellum.[28][29][30]

References

  1. ^ Dixon JE, Denu JM (1998). "Protein tyrosine phosphatases: mechanisms of catalysis and regulation". Curr Opin Chem Biol 2 (5): –.  
  2. ^ Paul S, Lombroso PJ (2003). "Receptor and nonreceptor protein tyrosine phosphatases in the nervous system". Cell. Mol. Life Sci. 60 (11): –.  
  3. ^ a b Zhang Y, Kurup P, Xu J, Carty N, Fernandez SM, Nygaard HB, Pittenger C, Greengard P, Strittmatter SM, Nairn AC, Lombroso PJ (Nov 2010). "Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer's disease mouse model". Proceedings of the National Academy of Sciences of the United States of America 107 (44): 19014–9.  
  4. ^ a b Goebel-Goody SM, Wilson-Wallis ED, Royston S, Tagliatela SM, Naegele JR, Lombroso PJ (Jul 2012). "Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model". Genes, Brain, and Behavior 11 (5): 586–600.  
  5. ^ Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard P, Nairn AC, Lombroso PJ (Apr 2010). "Abeta-mediated NMDA receptor endocytosis in Alzheimer's disease involves ubiquitination of the tyrosine phosphatase STEP61". The Journal of Neuroscience 30 (17): 5948–57.  
  6. ^ Sun JP, Zhang ZY, Wang WQ (2003). "An overview of the protein tyrosine phosphatase superfamily". Curr Top Med Chem 3 (7): –.  
  7. ^ Alonso A, Sasin J, et al. (2004). "Protein tyrosine phosphatases in the human genome". Cell 117 (6): 699–711.  
  8. ^ Carty NC, Xu J, Kurup P, Brouillette J, Goebel-Goody SM, Austin DR, Yuan P, Chen G, Correa PR, Haroutunian V, Pittenger C, Lombroso PJ (2012). "The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications". Translational Psychiatry 2 (7): e137.  
  9. ^ Kurup PK, Xu J, Videira RA, Ononenyi C, Baltazar G, Lombroso PJ, Nairn AC (Jan 2015). "STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson's disease". Proceedings of the National Academy of Sciences of the United States of America 112 (4): 1202–7.  
  10. ^ Saavedra A, Giralt A, Rué L, Xifró X, Xu J, Ortega Z, Lucas JJ, Lombroso PJ, Alberch J, Pérez-Navarro E (Jun 2011). "Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington's disease: a STEP in the resistance to excitotoxicity". The Journal of Neuroscience 31 (22): 8150–62.  
  11. ^ Gladding CM, Sepers MD, Xu J, Zhang LY, Milnerwood AJ, Lombroso PJ, Raymond LA (Sep 2012). "Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model". Human Molecular Genetics 21 (17): 3739–52.  
  12. ^ Deb I, Manhas N, Poddar R, Rajagopal S, Allan AM, Lombroso PJ, Rosenberg GA, Candelario-Jalil E, Paul S (Nov 2013). "Neuroprotective role of a brain-enriched tyrosine phosphatase, STEP, in focal cerebral ischemia". The Journal of Neuroscience 33 (45): 17814–26.  
  13. ^ Hicklin TR, Wu PH, Radcliffe RA, Freund RK, Goebel-Goody SM, Correa PR, Proctor WR, Lombroso PJ, Browning MD (Apr 2011). "Alcohol inhibition of the NMDA receptor function, long-term potentiation, and fear learning requires striatal-enriched protein tyrosine phosphatase". Proceedings of the National Academy of Sciences of the United States of America 108 (16): 6650–5.  
  14. ^ Darcq E, Hamida SB, Wu S, Phamluong K, Kharazia V, Xu J, Lombroso P, Ron D (Jun 2014). "Inhibition of striatal-enriched tyrosine phosphatase 61 in the dorsomedial striatum is sufficient to increased ethanol consumption". Journal of Neurochemistry 129 (6): 1024–34.  
  15. ^ Yang CH, Huang CC, Hsu KS (May 2012). "A critical role for protein tyrosine phosphatase nonreceptor type 5 in determining individual susceptibility to develop stress-related cognitive and morphological changes". The Journal of Neuroscience 32 (22): 7550–62.  
  16. ^ Dabrowska J, Hazra R, Guo JD, Li C, Dewitt S, Xu J, Lombroso PJ, Rainnie DG (Dec 2013). "Striatal-enriched protein tyrosine phosphatase-STEPs toward understanding chronic stress-induced activation of corticotrophin releasing factor neurons in the rat bed nucleus of the stria terminalis". Biological Psychiatry 74 (11): 817–26.  
  17. ^ Wo YY, Shabanowitz J, Hunt DF, Davis JP, Mitchell GL, Van Etten RL, McCormack AL (1992). "Sequencing, cloning, and expression of human red cell-type acid phosphatase, a cytoplasmic phosphotyrosyl protein phosphatase". J. Biol. Chem. 267 (15): 10856–10865.  
  18. ^ Shekels LL, Smith AJ, Bernlohr DA, Van Etten RL (1992). "Identification of the adipocyte acid phosphatase as a PAO-sensitive tyrosyl phosphatase". Protein Sci. 1 (6): 710–721.  
  19. ^ William C. Plaxton; Michael T. McManus (2006). Control of primary metabolism in plants. Wiley-Blackwell. pp. 130–.  
  20. ^ Knapp S, Longman E, Debreczeni JE, Eswaran J, Barr AJ (2006). "The crystal structure of human receptor protein tyrosine phosphatase kappa phosphatase domain 1". Protein Sci. 15 (6): –.  
  21. ^  
  22. ^ Barford D, Das AK, Egloff MP (1998). "The structure and mechanism of protein phosphatase s: insights into catalysis and regulation". Annu. Rev. Biophys. Biomol. Struct. 27 (1): –.  
  23. ^ Su XD, Taddei N, Stefani M, Ramponi G, Nordlund P (August 1994). "The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase". Nature 370 (6490): 575–8.  
  24. ^ Stuckey JA, Schubert HL, Fauman EB, Zhang ZY, Dixon JE, Saper MA (August 1994). "Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate". Nature 370 (6490): 571–5.  
  25. ^ Yuvaniyama J, Denu JM, Dixon JE, Saper MA (May 1996). "Crystal structure of the dual specificity protein phosphatase VHR". Science 272 (5266): 1328–31.  
  26. ^ Aceti DJ, Bitto E, Yakunin AF, et al. (October 2008). "Structural and functional characterization of a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000". Proteins 73 (1): 241–53.  
  27. ^ Mustelin T, Vang T and Bottini N. (2005). "Protein tyrosine phosphatases and the immune response". Nat. Rev. Immunol. 5 (1): 43–57.  
  28. ^ Lombroso PJ, Murdoch G, Lerner M (Aug 1991). "Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum". Proceedings of the National Academy of Sciences of the United States of America 88 (16): 7242–6.  
  29. ^ Bult A, Zhao F, Dirkx R, Sharma E, Lukacsi E, Solimena M, Naegele JR, Lombroso PJ (Dec 1996). "STEP61: a member of a family of brain-enriched PTPs is localized to the endoplasmic reticulum". The Journal of Neuroscience 16 (24): 7821–31.  
  30. ^ Lombroso PJ, Naegele JR, Sharma E, Lerner M (Jul 1993). "A protein tyrosine phosphatase expressed within dopaminoceptive neurons of the basal ganglia and related structures". The Journal of Neuroscience 13 (7): 3064–74.  

Sources

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.