World Library  
Flag as Inappropriate
Email this Article
 

Richard Brauer

Richard Brauer
Richard and Ilse Brauer in 1970
Photo courtesy MFO
Born February 10, 1901
Charlottenburg
Died April 17, 1977
Belmont, Massachusetts
Residence Germany, USA
Nationality German, USA
Fields Scientist, Mathematician
Institutions University of Toronto, University of Michigan, Harvard University
Alma mater University of Berlin
Doctoral advisor Issai Schur
Erhard Schmidt
Doctoral students R. H. Bruck
S. A. Jennings
Peter Landrock
D. J. Lewis
J. Carson Mark
Cecil J. Nesbitt
Robert Steinberg
Known for Brauer's theorem on induced characters
Notable awards Cole Prize in Algebra (1949)
National Medal of Science (1970)

Richard Dagobert Brauer (February 10, 1901 – April 17, 1977) was a leading German and American mathematician. He worked mainly in abstract algebra, but made important contributions to number theory. He was the founder of modular representation theory.

Contents

  • Education and career 1
  • Mathematical work 2
  • Hypercomplex numbers 3
  • See also 4
  • Publications 5
  • References 6
  • External links 7

Education and career

Alfred Brauer was Richard's brother and seven years older. Alfred and Richard were both interested in science and mathematics, but Alfred was injured in combat in World War I. As a boy, Richard dreamt of becoming an inventor, and in February 1919 enrolled in Technische Hochschule Berlin-Charlottenburg. He soon transferred to University of Berlin. Except for the summer of 1920 when he studied at University of Freiburg, he studied in Berlin, being awarded his doctorate 16 March 1926. Issai Schur conducted a seminar and posed a problem in 1921 that Alfred and Richard worked on together, and published a result. The problem also was solved by Heinz Hopf at the same time. Richard wrote his thesis under Schur, providing an algebraic approach to irreducible, continuous, finite-dimensional representations of real orthogonal (rotation) groups.

Ilse Karger also studied mathematics at the University of Berlin; she and Richard were married 17 September 1925. Their boys George Ulrich (b 1927) and Fred Gunther (b 1932) also became mathematicians. Brauer began his teaching career in Königsberg (now Kaliningrad) working as Konrad Knopp’s assistant. Brauer expounded central division algebras over a perfect field while in Königsberg; the isomorphism classes of such algebras form the elements of the Brauer group he introduced.

When the The Holocaust.[1]

Hermann Weyl invited Richard to assist him at Princeton's Institute for Advanced Study in 1934. Richard and Nathan Jacobson edited Weyl's lectures Structure and Representation of Continuous Groups. Through the influence of Emmy Noether, Richard was invited to University of Toronto to take up a faculty position. With his graduate student Cecil J. Nesbitt he developed modular representation theory, published in 1937. Robert Steinberg, and Stephen Arthur Jennings were also Brauer’s students in Toronto. Brauer also conducted international research with Tadasi Nakayama on representations of algebras. In 1941 University of Wisconsin hosted visiting professor Brauer. The following year he visited the Institute for Advanced Study and Bloomington, Indiana where Emil Artin was teaching.

In 1948 Richard and Ilse moved to Ann Arbor, Michigan where he and Robert M. Thrall contributed to the program in modern algebra at University of Michigan. With his graduate student K. A. Fowler, Brauer proved the Brauer-Fowler theorem. Donald John Lewis was another of his students at UM.

In 1952 Brauer joined the faculty of Harvard University. Before retiring in 1971 he taught aspiring mathematicians such as Donald Passman and I. Martin Isaacs. The Brauers frequently traveled to see their friends such as Reinhold Baer, Werner Wolfgang Rogosinski, and Carl Ludwig Siegel.

Mathematical work

Several theorems bear his name, including Brauer's induction theorem, which has applications in number theory as well as finite group theory, and its corollary Brauer's characterization of characters, which is central to the theory of group characters.

The Brauer–Fowler theorem, published in 1956, later provided significant impetus towards the classification of finite simple groups, for it implied that there could only be finitely many finite simple groups for which the centralizer of an involution (element of order 2) had a specified structure.

Brauer applied Glauberman's Z* theorem. The theory of a block with a cyclic defect group, first worked out by Brauer in the case when the principal block has defect group of order p, and later worked out in full generality by E. C. Dade, also had several applications to group theory, for example to finite groups of matrices over the complex numbers in small dimension. The Brauer tree is a combinatorial object associated to a block with cyclic defect group which encodes much information about the structure of the block.

In 1970, he was awarded the National Medal of Science.[2]

Hypercomplex numbers

Eduard Study had written an article on hypercomplex numbers for Klein's encyclopedia in 1898. This article was expanded for the French language edition by Henri Cartan in 1908. By the 1930s there was evident need to update Study’s article, and Richard Brauer was commissioned to write on the topic for the project. As it turned out, when Brauer had his manuscript prepared in Toronto in 1936, though it was accepted for publication, politics and war intervened. Nevertheless, Brauer kept his manuscript through the 40s, 50s, and 60s, and in 1979 it was published[3] by Okayama University in Japan. It also appeared posthumously as paper #22 in the first volume of his Collected Papers. His title was "Algebra der hyperkomplexen Zahlensysteme (Algebren)". Unlike the articles by Study and Cartan, which were exploratory, Brauer’s article reads as a modern abstract algebra text with its universal coverage. Consider his introduction:

In the beginning of the 19th century, the usual complex numbers and their introduction through computations with number-pairs or points in the plane, became a general tool of mathematicians. Naturally the question arose whether or not a similar "hypercomplex" number can be defined using points of n-dimensional space. As it turns out, such extension of the system of real numbers requires the concession of some of the usual axioms (Weierstrass 1863). The selection of rules of computation, which cannot be avoided in hypercomplex numbers, naturally allows some choice. Yet in any cases set out, the resulting number systems allow a unique theory with regard to their structural properties and their classification. Further, one desires that these theories stand in close connection with other areas of mathematics, wherewith the possibility of their applications is given.

While still in Königsberg in 1929, Brauer published an article in Mathematische Zeitschrift "Über Systeme hyperkomplexer Zahlen"[4] which was primarily concerned with integral domains (Nullteilerfrei systeme) and the field theory which he used later in Toronto.

See also

Publications

  • Brauer, R.; Sah, Chih-han, eds. (1969), Theory of finite groups: A symposium, W. A. Benjamin, Inc., New York-Amsterdam,  
  • Brauer, R. (1980), Fong, Paul; Wong, Warren J., eds., Collected Papers. Vol. I, Mathematicians of Our Time 17,  
  • Brauer, R. (1980), Fong, Paul; Wong, Warren J., eds., Collected Papers. Vol. II, Mathematicians of Our Time 18,  
  • Brauer, R. (1980), Fong, Paul; Wong, Warren J., eds., Collected Papers. Vol. III, Mathematicians of Our Time 19,  

References

  1. ^ a b c Bergmann, Birgit; Epple, Moritz; and Ungar, Ruti. Transcending Tradition: Jewish Mathematicians in German Speaking Academic Culture, p. 54. Springer, 2012. ISBN 3642224636. Accessed February 25, 2013. "Schur's disciple Alfred Brauer was the last Jewish mathematician who managed to complete his habilitation and become Privatdozent at the University of Berlin before the Nazi regime began. Brauer escaped to the USA in 1939, joining his brother Richard (1901-1977) who had fled in 1933."
  2. ^ National Science Foundation The President's National Medal of Science
  3. ^ Mathematical Journal of Okayama University 21:53–89
  4. ^ Mathematische Zeitschrift 30:79–107, paper #7 in Collected Papers

External links


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.