World Library  
Flag as Inappropriate
Email this Article

TCP global synchronization

Article Id: WHEBN0002072054
Reproduction Date:

Title: TCP global synchronization  
Author: World Heritage Encyclopedia
Language: English
Subject: Transmission Control Protocol
Collection: Internet Architecture, Internet Standards
Publisher: World Heritage Encyclopedia
Publication
Date:
 

TCP global synchronization

TCP global synchronization in computer networks can happen to TCP/IP flows during periods of congestion because each sender will reduce their transmission rate at the same time when packet loss occurs.

Routers on the Internet normally have packet queues, to allow them to hold packets when the network is busy, rather than discarding them.

Because routers have limited resources, the size of these queues is also limited. The simplest technique to limit queue size is known as tail drop. The queue is allowed to fill to its maximum size, and then any new packets are simply discarded, until there is space in the queue again.

This causes problems when used on TCP/IP routers handling multiple TCP streams, especially when bursty traffic is present. While the network is stable, the queue is constantly full, and there are no problems except that the full queue results in high latency. However, the introduction of a sudden burst of traffic may cause large numbers of established, steady streams to lose packets simultaneously.

TCP has automatic recovery from dropped packets, which it interprets as congestion on the network (which is usually correct). The sender reduces its sending rate for a certain amount of time, and then tries to find out if the network is no longer congested by increasing the rate again subject to a ramp-up. This is known as the slow-start algorithm.

Almost all the senders will use the same time delay before increasing their rates. When these delays expire, at the same time, all the senders will send additional packets, the router queue will again overflow, more packets will be dropped, the senders will all back off for a fixed delay... ad infinitum.

This pattern of each sender decreasing and increasing transmission rates at the same time as other senders is referred to as "global synchronization" and leads to inefficient use of bandwidth, due to the large numbers of dropped packets, which must be retransmitted, and because the senders have a reduced sending rate, compared to the stable state, while they are backed-off, following each loss.

This problem has been the subject of much research. The consensus appears to be that the tail drop algorithm is the leading cause of the problem, and other queue size management algorithms such as Random Early Detection (RED) and Weighted RED will reduce the likelihood of global synchronization, as well as keeping queue sizes down in the face of heavy load and bursty traffic.

See also

References

  • Vegesna, Srinivas (2001). IP Quality of Service, chap. 6. Cisco press.  
  • Szigeti, Tim (2005). End-to-End QoS Network Design, chap. 6. Cisco press.  

External links

  • an ISOC paper discussing the dynamics of TCP, including global synchronization
  • A paper with graphs demonstrating TCP global synchronization in action and its impact when TCP coexists with UDP
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.