World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0030864235
Reproduction Date:

Title: Tempo  
Author: World Heritage Encyclopedia
Language: English
Subject: Messa (Puccini), Soñando por Bailar 2012, Adabel Guerrero, Beat (music), Gotta Be You (One Direction song)
Publisher: World Heritage Encyclopedia


(2,2,6,6-Tetramethylpiperidin-1-yl)oxy, or (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl or TEMPO is a radical polymerization.[3] The stability of this radical is attributed to the resonance provided by non-bonding electrons on the nitrogen atom, which form a 2c3e (half-) bond between nitrogen and oxygen, and hyperconjugative ability. Additional stability arises from the steric protection provided by the four methyl groups adjacent to the nitroxyl group; however, the methyl groups prevent a double bond occurring between either carbon adjacent to nitrogen.[4] The stability of the radical is also indicated by the weakness of the O-H bond in the hydrogenated derivative TEMPO-H. With an O-H bond dissociation energy of about 70 kcal/mol, this bond is about 30% weaker than a typical O-H bond.[5]

Application in organic synthesis

TEMPO is employed in alcohols to aldehydes. The actual oxidant is the N-oxoammonium salt. In a catalytic cycle with sodium hypochlorite as the stoichiometric oxidant, hypochlorous acid generates the N-oxoammonium salt from TEMPO.

One typical reaction example is the oxidation of (S)-(-)-2-methyl-1-butanol to (S)-(+)-2-methylbutanal.[6] 4-Methoxyphenethyl alcohol is oxidized to the corresponding carboxylic acid in a system of catalytic TEMPO and sodium hypochlorite and a stoichiometric amount of sodium chlorite.[7] TEMPO oxidations also exhibit chemoselectivity, being inert towards secondary alcohols, but the reagent will convert aldehydes to carboxylic acids.

In cases where secondary oxidizing agents cause side reactions, it is possible to stoichiometrically convert TEMPO to the oxoammonium salt in a separate step. For example, in the oxidation of geraniol to geranial, 4-acetamido-TEMPO is first oxidized to the oxoammonium tetrafluoroborate.[8]

TEMPO can also be employed in nitroxide mediated radical polymerization (NMP), a controlled free radical polymerization technique that allows better control over the final molecular weight distribution. The TEMPO free radical can be added to the end of a growing polymer chain, creating a "dormant" chain that stops polymerizing. However, the linkage between the polymer chain and TEMPO is weak, and can be broken upon heating, which then allows the polymerization to continue. Thus, the chemist can control the extent of polymerization and also synthesize narrowly distributed polymer chains.

Industrial applications

TEMPO itself is relatively inexpensive,[9] but there are TEMPO derivatives that are often used such as 4-hydroxy-TEMPO (TEMPOL)[10] or 4-acetamido-TEMPO that have cheaper precursors. Examples of TEMPO use in chemical industry are bisnoralcohol (a steroid) to bisnoraldehyde conversion by Upjohn and retinol to retinal conversion by Novartis. One industrial method employs H5PV2Mo10O40 as co-oxidant, the reduced form of which can be reoxidized by atmospheric oxygen. Polymer-supported TEMPO catalysts are also commercially available.[11]


  1. ^ Barriga, S. (2001). "2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)".  
  2. ^ Lebedev, O. L.; Kazarnovskii, S. N. (1960). Zhur. Obshch. Khim. 30 (5): 1631–1635. 
  3. ^ Montanari, F.; Quici, S.; Henry-Riyad, H.; Tidwell, T. T. (2005). "2,2,6,6-Tetramethylpiperidin-1-oxyl". Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons.  
  4. ^ Zanocco, A. L.; Canetem, A. Y.; Melendez, M. X. (2000). "A Kinetic Study of the Reaction between 2-p-methoxyphenyl-4-phenyl-2-oxazolin-5-one and 2,2,6,6-Tetramethyl-1-piperidinyl-n-oxide". Boletín de la Sociedad Chilena de Química 45 (1): 123–129.  
  5. ^ Galli, C. (2009). "Nitroxyl radicals". Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids 2. John Wiley & Sons. pp. 705–750.  
  6. ^ Anelli, P. L.; Montanari, F.; Quici, S. (1990), "A General Synthetic Method for the Oxidation of Primary Alcohols to Aldehydes: (S)-(+)-2-Methylbutanal",  
  7. ^ Zhao, M. M.; Li, J.; Mano, E.; Song, Z. J.; Tschaen, D. M. (2005), "Oxidation of Primary Alcohols to Carboxylic Acids with Sodium Chlorite catalyzed by TEMPO and Bleach: 4-Methoxyphenylacetic Acid",  
  8. ^ Bobbitt, J. M.; Merbouh, N. (2005), "2,6-Octadienal, 3,7-dimethyl-, (2E)-",  
  9. ^ "TEMPO". Sigma-Aldrich. 
  10. ^ "4-Hydroxy-TEMPO". Sigma-Aldrich. 
  11. ^ Ciriminna, R.; Pagliaro, M. (2010). "Industrial Oxidations with Organocatalyst TEMPO and Its Derivatives". Organic Process Research & Development 14 (1): 245–251.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.