World Library  
Flag as Inappropriate
Email this Article

Toxalbumin

Article Id: WHEBN0027847833
Reproduction Date:

Title: Toxalbumin  
Author: World Heritage Encyclopedia
Language: English
Subject: Croton gratissimus, Jatropha curcas, Plant defense against herbivory, Alpha-Bungarotoxin, California newt
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Toxalbumin

Toxalbumins are toxic plant dimers held together by a disulfide bond and comprise a lectin (carbohydrate-binding protein) part which binds to the cell membrane and enables the toxin part to gain access to the cell contents. Toxalbumins are similar in structure to the toxins found in cholera, tetanus, diphtheria and botulinum;[1] and their physiological and toxic properties are similar to those of viperine snake venom.[2]

Toxalbumins notably are present in the plant families Leguminosae and Euphorbiaceae, occurring for instance in Robinia pseudoacacia, Abrus precatorius, Jatropha curcas, Croton gratissimus and Ricinus communis. Typical toxalbumins are abrin and ricin.[3][4] Ingestion of seed containing toxalbumins is not necessarily fatal as the hard seed coat will withstand digestion, unless the seed has been pierced, as would happen in the making of necklaces, prayer beads or bracelets, and even then the toxalbumin is likely to be digested and thereby rendered harmless. Toxalbumins injected intravenously or subcutaneously or inhaled in powdered form, though, are highly toxic. A latent period of hours to days may follow with no sensible signs of distress, after which symptoms of nausea, vomiting and diarrhoea will appear, followed by delirium, seizures, coma, and death. Seen from an evolutionary viewpoint, toxalbumins developed as a deterrent to consumption of seeds, foliage, bark and roots. Ripe fruits having a fleshy pulp are usually tasty and edible and lacking toxalbumins, encourage ingestion and the consequent distribution of seeds that have a coat sufficiently durable to survive their passage through the digestive system of a herbivore or fructivore.[5][6]

Being soluble in water, ricin is not present in extracted oils. As with most proteins it breaks down after heat treatment, such as cooking or steaming, and after the oil is extracted, the resulting pomace is often used as animal feed. There is an enormous variation in sensitivity to the toxin, and a lethal dose may be as little as two-millionths of body weight. Since ricin is a protein, antibodies may be produced by inoculation, allowing resistance of up to 800 times a normal lethal dose. Ricin has been used in assassinations, a notorious case being the use of a 1.53 mm pellet holding a few hundred millionths of a gram of ricin to kill the Bulgarian broadcaster, [7]

Toxalbumins were first described in about 1890 by Ludwig Brieger (1849–1919) and Eugen Baumann. Brieger first used the term toxin.[8]

The toxins present in poisonous mushrooms such as Amanita phalloides are quite different from toxalbumins and are mostly secondary metabolites or amatoxins which do not readily break down under applied heat. They are potent inhibitors of RNA polymerase II, an enzyme vital in the synthesis of messenger RNA (mRNA), microRNA, and small nuclear RNA (snRNA). Without mRNA, the template for protein synthesis, cell metabolism stops. In this respect their metabolic effect is similar to that of toxalbumins.

See also

References

  1. ^ http://www.jstor.org/pss/20243302
  2. ^ http://www.planetayurveda.com/abrus_precatorius.htm
  3. ^ http://www.drugsandpoisons.com/2008/01/lectins-peas-and-beans-gone-bad.html
  4. ^ http://books.google.co.za/books?id=WuA4LsWXXWEC&pg=PA1345&lpg=PA1345&dq=toxalbumin&source=bl&ots=iiJz7L3ADe&sig=t7l6nHitMpLmjffHXA0VTTISpEY&hl=en&ei=QRclTIfCIdq5jAf5hoGBAQ&sa=X&oi=book_result&ct=result&resnum=2&ved=0CBYQ6AEwATgK#v=onepage&q=toxalbumin&f=false
  5. ^ Medicinal and Poisonous Plants of Southern and Eastern Africa - John Mitchell Watt, Maria Gerdina Breyer-Brandwijk (E. & S. Livingstone Ltd. (1962))
  6. ^ http://emedicine.medscape.com/article/1009200-overview
  7. ^ "Notes on Castor-bean
  8. ^ http://books.google.co.za/books?id=oWhqhK1cE-gC&pg=PA6&lpg=PA6&dq=Ludwig+Brieger+[1849-1919]&source=bl&ots=7fa0fkkgkV&sig=ItABIJkoSsxyTdM9ts3iSSD3NQc&hl=en&ei=2lwmTKuaH4i6jAffyMGUAQ&sa=X&oi=book_result&ct=result&resnum=4&ved=0CCMQ6AEwAw#v=onepage&q=Ludwig%20Brieger%20[1849-1919]&f=false
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.