World Library  
Flag as Inappropriate
Email this Article

TreadPort Active Wind Tunnel

Article Id: WHEBN0037012169
Reproduction Date:

Title: TreadPort Active Wind Tunnel  
Author: World Heritage Encyclopedia
Language: English
Subject: Virtual reality, Artificial reality, Projection augmented model, Cyberith Virtualizer, Sensorama
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

TreadPort Active Wind Tunnel

[1][2] The TreadPort Active Wind Tunnel (also known as the TPAWT) is a unique immersive virtual environment that integrates locomotion interfaces[3][4] with sensory cues such as visual, auditory, olfactory, radiant heat and wind display.[5] The TPAWT augments the Sarcos Treadport consisting of the Cave automatic virtual environment(CAVE)[6] with a subsonic wind tunnel built around the user environment, and adds wind to the virtual environment. The Treadport Active Wind Tunnel is one of the first virtual environments to include wind into the sensory experience of the user. Other systems considering wind display, directly use fans.[7]

Footnotes

  1. ^ Kulkarni, Sandip (2009). Underactuated Control and Characterization of Wind Flow in a Virtual Environment. Salt Lake City, Utah: ProQuest. p. 214. 
  2. ^ Kulkarni, S.; Fisher, C.; Pardyjak, E.; Minor, M.; Hollerbach, J.; , "Wind display device for locomotion interface in a virtual environment," EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. Third Joint , vol., no., pp.184-189, 18–20 March 2009 doi: 10.1109/WHC.2009.4810855
  3. ^ Hollerbach, J.; Grow, D.; Parker, C.; , "Developments in locomotion interfaces," Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on , vol., no., pp. 522- 525, 28 June-1 July 2005 doi: 10.1109/ICORR.2005.1501156
  4. ^ Stanney, KM 2002, Handbook Of Virtual Environments : Design, Implementation, And Applications, n.p.: Lawrence Erlbaum Associates, eBook Collection (EBSCOhost), EBSCOhost, viewed 17 September 2012.
  5. ^ Kulkarni, S.D.; Minor, M.A.; Deaver, M.W.; Pardyjak, E.R.; Hollerbach, J.M.Design, Sensing, and Control of a Scaled Wind Tunnel for Atmospheric Display, Mechatronics, IEEE/ASME Transactions on , vol.17, no.4, pp.635-645, Aug. 2012
  6. ^ Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V. Kenyon and John C. Hart. "The CAVE: Audio Visual Experience Automatic Virtual Environment", Communications of the ACM, vol. 35(6), 1992, pp. 64–72. DOI:10.1145/129888.129892
  7. ^ http://www.springerlink.com/content/316u031187170504/

External links

  • The TPAWT at the University of Utah

References

  • Kulkarni, S.D.; Minor, M.A.; Deaver, M.W.; Pardyjak, E.R.; Hollerbach, J.M.Design, Sensing, and Control of a Scaled Wind Tunnel for Atmospheric Display, Mechatronics, IEEE/ASME Transactions on, vol.17, no.4, pp. 635–645, Aug. 2012
  • Kulkarni, S.D.; Chakravarthy,S.,Minor, M.A.;Pardyjak, E.R.; Hollerbach, J.M. Control of a Duct Flow Network for Wind Display in a Virtual Environment, Mechatronics, IEEE/ASME Transactions on, vol.17, no.6, pp. 1021–1030, 2012
  • Kirkman, R., and Metzger, M., "Conceptual design of an adaptive wind tunnel for the generation of unsteady complex flow patterns," ASME 2005 Fluids Engineering Division Summer Meeting and Exhibition, Houston, June 19–23, 2005.
  • Kirkman, R., Metzger, M., Deaver, M., and Pardyjak, E., "Sensitivity analysis of a three-dimensional wind tunnel design," ASME 2006 Fluids Engineering Division Summer Meeting and Exhibition, Miami, FL, July 17–20, 2006.
  • Kirkman, R., and Metzger, M., "Computational sensitivity analysis of laminar flows using finite volume methods," 60th Annual Meeting of the Division of Fluid Dynamics, American Physical Society, Nov. 18-20, 2007, Salt Lake City.
  • Kirkman, R., and Metzger, M., "Direct numerical simulation of sensitivity coefficients in low-Reynolds number turbulent channel flow," 5th AIAA Theoretical Fluid Mechanics Conference, American Institute of Aeronautics and Astronautics, 2008.
  • Kulkarni, S., Fisher, C., Pardyjak, E., Minor, M., and Hollerbach, J.M., ``Wind display device for locomotion interface in a virtual environment, Proc. World Haptics Conference, Salt Lake City, UT, March 18–20, 2009, pp. 184-189.
  • Kulkarni, S.D., Minor, M.A., Deaver, M.W., and Pardyjak, E.R., "Output feedback control of wind display in a virtual environment," Proc. IEEE Intl. Conf. Robotics and Automation, Rome, Italy, April 10–14, 2007.
  • Kulkarni, S., Minor, M., Deaver, M., Pardyjak, E., and Hollerbach, J.M., ``Steady headwind display with conditional angular rate-switching control, Proc. IEEE Intl. Conf. Robotics and Automation, May 19–23, 2008, Pasadena, CA.
  • Kulkarni, S., Minor, M., Pardyjak, E., and Hollerbach, J.M., ``Combined wind speed and angle control in a virtual environment, Proc. IEEE/RSJ Intl. Conf. Intelligent Robots and Systems (IROS), Sept. 22-26, 2008, Nice, France.
  • Pardyjak, E.R., Singh, B., Norgren, A., and Willemsen, P., "Using video gaming technology to achieve low-cost speed up of emergency response urban dispersion simulations," 7th Symp. on the Urban Environment, American Meteorological Society, Sept. 10-13, 2007, San Diego.
  • Wang, H., Kearney, J.E., Cremer, J., and Willemsen, P., "Steering behaviors for autonomous vehicles in virtual environments," Proc. IEEE Virtual Reality, 2005.
  • Willemsen, P., Kearney, J.K., and Wang, H., "Ribbon networks for modeling navigable paths of autonomous paths of autnomous agents in virtual environments," IEEE Trans. Visualization and Computer Graphics, 12, 2006, p. 331.
  • Willemsen, P., Norgren, A., Singh, B., and Pardyjak, E.R., "Development of a new methodology for improving urban fast response Lagrangian dispersion simulation via parallelism on the graphics processing unit," Proc. 11th Intl. Conf. on Harmonisation within Atomspheric Dispersion Modelling for Regulatory Purposes, Queen's College, University of Cambridge, U.K., July 2–5, 2007.
  • Willemsen, P., Norgren, A., Singh, B., and Pardyjak, E.R., "Integrating particle dispersion models into real-time virtual environments," Proc. 14th Eurographics Symp. on Virtual Environments, 2008, p. 57.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.