A view of the Tweig (Tuwaiq) Escarpment from the west. The Saudi capital Riyadh lies just beyond the horizon.

Jebel Tuwaiq (pronounced "Twayg", Arabic: جبل طويق‎) is a narrow escarpment that cuts through the plateau of Nejd in central Arabia, running approximately 800 km from the southern border of Al-Qasim in the north, to the northern edge of the Empty Quarter desert near Wadi ad-Dawasir in the south. It is 600 m high and also has a Middle Jurassic stratigraphic section. The eastern side slopes downwards gradually, while the western side ends in an abrupt manner. The escarpment can be thought of as a narrow plateau, though the locals refer to it as a jebel, or "mount".

Many narrow valleys (wadis) run along its sides, such as Wadi Hanifa, and a group of towns lie on its central section, including the Saudi capital, Riyadh. Many settlements have historically existed on either side of it as well, such as those of Sudair and Al-Washm. The Tweig escarpment is mentioned in Yaqut's 13th century geographical encyclopedia under the name Al-'Aridh, though for the past few centuries that name has applied only to the central section of it, around Riyadh.

Petroleum geology

The Arab-D (Upper Jurassic) unit of the Riyadh Group makes up one of the largest petroleum reservoirs in the world. Bureau and Saudi Aramco researchers conducted a high-resolution LIDAR survey of Middle Jurassic outcrops of the Tuwaiq Mountain limestone along the Tuwaiq Mountain Escarpment near the city of Riyadh, Saudi Arabia. This study was a first step towards building a quantitative 3-D geologic model for use as an analog to the lower Arab-D reservoir. Outcrop analogs like this one are critical to understanding reservoir performance on the flow-unit scale (1 to 30 meters). Although seismic data allow geologists to gain information about large-scale reservoir compartmentalization (>30 meters), flow-unit scale reservoir parameters are far below seismic imaging capability and inter-well spacing.

High-precision laser scans were used as a template upon which stratigraphic interpretation were made allowing researchers to characterize sub-seismic, flow-unit scale reservoir properties of Jurassic bioherms in an effort to better understand optimum production techniques of this enormous reservoir.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.