World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000106291
Reproduction Date:

Title: Ultracentrifuge  
Author: World Heritage Encyclopedia
Language: English
Subject: Laboratory centrifuge, AMOLF, Khan Research Laboratories, Konrad Beyerle, Theodor Svedberg
Collection: Centrifuges
Publisher: World Heritage Encyclopedia


A laboratory ultracentrifuge.

The ultracentrifuge is a centrifuge optimized for spinning a rotor at very high speeds, capable of generating acceleration as high as 2 000 000 g (approx. 19 600 km/s²). There are two kinds of ultracentrifuges, the preparative and the analytical ultracentrifuge. Both classes of instruments find important uses in molecular biology, biochemistry, and polymer science.[1]


  • History 1
  • Analytical ultracentrifuge 2
  • Preparative ultracentrifuge 3
  • Hazards 4
  • See also 5
  • References 6
  • External links 7


Theodor Svedberg invented the analytical ultracentrifuge in 1925,[2][3] and won the Nobel Prize in Chemistry in 1926 for his research on colloids and proteins using the ultracentrifuge.

The vacuum ultracentrifuge was invented by Jesse W. Beams in the Physics Department at the University of Virginia. It was his contribution of the vacuum which allowed a reduction in friction generated at high speeds. Vacuum systems also enabled the maintenance of constant temperature across the sample, eliminating convection currents that interfered with the interpretation of sedimentation results. [4]

In 1946, Pickels cofounded Spinco (Specialized Instruments Corp.) to market analytical and preparative ultracentrifuges based on his design. Pickels considered his design to be too complicated for commercial use and developed a more easily operated, “foolproof” version. But even with the enhanced design, sales of analytical centrifuges remained low, and Spinco almost went bankrupt. The company survived by concentrating on sales of preparative ultracentrifuge models, which were becoming popular as workhorses in biomedical laboratories.[4] In 1949, Spinco introduced the Model L, the first preparative ultracentrifuge to reach a maximum speed of 40,000 rpm. In 1954, Beckman Instruments, now Beckman Coulter, purchased the company, forming the basis of its Spinco centrifuge division.[5]

Analytical ultracentrifuge

In an analytical ultracentrifuge, a sample being spun can be monitored in real time through an optical detection system, using ultraviolet light absorption and/or interference optical refractive index sensitive system. This allows the operator to observe the evolution of the sample concentration versus the axis of rotation profile as a result of the applied centrifugal field. With modern instrumentation, these observations are electronically digitized and stored for further mathematical analysis. Two kinds of experiments are commonly performed on these instruments: sedimentation velocity experiments and sedimentation equilibrium experiments.

Sedimentation velocity experiments aim to interpret the entire time-course of sedimentation, and report on the shape and molar mass of the dissolved macromolecules, as well as their size-distribution.[6] The size resolution of this method scales approximately with the square of the particle radii, and by adjusting the rotor speed of the experiment size-ranges from 100 Da to 10 GDa can be covered. Sedimentation velocity experiments can also be used to study reversible chemical equilibria between macromolecular species, by either monitoring the number and molar mass of macromolecular complexes, by gaining information about the complex composition from multi-signal analysis exploiting differences in each components spectroscopic signal, or by following the composition dependence of the sedimentation rates of the macromolecular system, as described in Gilbert-Jenkins theory.

Sedimentation equilibrium experiments are concerned only with the final steady-state of the experiment, where sedimentation is balanced by diffusion opposing the concentration gradients, resulting in a time-independent concentration profile. Sedimentation equilibrium distributions in the centrifugal field are characterized by Boltzmann distributions. This experiment is insensitive to the shape of the macromolecule, and directly reports on the molar mass of the macromolecules and, for chemically reacting mixtures, on chemical equilibrium constants. [7]

The kinds of information that can be obtained from an analytical ultracentrifuge include the gross shape of macromolecules, the conformational changes in macromolecules, and size distributions of macromolecular samples. For macromolecules, such as proteins, that exist in chemical equilibrium with different non-covalent complexes, the number and subunit stoichiometry of the complexes and equilibrium constant constants can be studied.

Analytical ultracentrifugation has recently seen a rise in use because of increased ease of analysis with modern computers and the development of software, including an National Institutes of Health supported software package, SedFit.

Preparative ultracentrifuge

Preparative ultracentrifuges are available with a wide variety of rotors suitable for a great range of experiments. Most rotors are designed to hold tubes that contain the samples. Swinging bucket rotors allow the tubes to hang on hinges so the tubes reorient to the horizontal as the rotor initially accelerates. Fixed angle rotors are made of a single block of material and hold the tubes in cavities bored at a predetermined angle. Zonal rotors are designed to contain a large volume of sample in a single central cavity rather than in tubes. Some zonal rotors are capable of dynamic loading and unloading of samples while the rotor is spinning at high speed.

Preparative rotors are used in biology for pelleting of fine particulate fractions, such as cellular organelles (caesium salts are used for separation of nucleic acids. After the sample has spun at high speed for sufficient time to produce the separation, the rotor is allowed to come to a smooth stop and the gradient is gently pumped out of each tube to isolate the separated components.


The tremendous rotational kinetic energy of the rotor in an operating ultracentrifuge makes the catastrophic failure of a spinning rotor a serious concern. Rotors conventionally have been made from lightweight metals, aluminum or titanium. The stresses of routine use and harsh chemical solutions eventually cause rotors to deteriorate. Proper use of the instrument and rotors within recommended limits and careful maintenance of rotors to prevent corrosion and to detect deterioration is necessary to mitigate this risk.[8][9]

More recently some rotors have been made of light weight carbon fiber composite material, which are up to 60% lighter, resulting in faster acceleration/deceleration rates. Carbon fiber composite rotors also are corrosion-resistant, eliminating a major cause of rotor failure.[10]

See also


  1. ^ Susan R. Mikkelsen & Eduardo Cortón. Bioanalytical Chemistry, Ch. 13. Centrifugation Methods. John Wiley & Sons, Mar 4, 2004, pp. 247-267.
  2. ^ "Svedberg". Retrieved 2010-06-23. 
  3. ^ Joe Rosen; Lisa Quinn Gothard. Encyclopedia of Physical Science. Infobase Publishing; 2009. ISBN 978-0-8160-7011-4. p. 77.
  4. ^ a b Elzen B. Vacuum ultracentrifuge. In: Encyclopedia of 20th-Century Technology, Colin Hempstead & William Worthington, eds. Routledge, 2005. p. 868.
  5. ^ Arnold O. Beckman: One Hundred Years of Excellence. By Arnold Thackray and Minor Myers, Jr. Philadelphia: Chemical Heritage Foundation, 2000.
  6. ^ Perez-Ramirez, B. and Steckert, J.J. (2005). Therapeutic Proteins: Methods and Protocols. C.M. Smales and D.C. James, Eds. Volume 308: 301-318. Humana Press Inc, Totowa, NJ.
  7. ^ Ghirlando, R. "The analysis of macromolecular interactions by sedimentation equilibrium.". 2011. 
  8. ^ Beckman Instruments, Spinco Division. Urgent corrective action notice: Reclassification to Minimize Ultracentrifuge Chemical Explosion Hazard. June 22, 1984.
  9. ^ Goodman, T. Centrifuge Safety and Security. American Laboratory, February 01, 2007
  10. ^ Piramoon, Sheila. "Carbon fibers boost centrifuge flexibility: advancements in centrifuge rotors over the years have led to improved lab productivity." Laboratory Equipment Mar. 2011: 12+. General Reference Center GOLD. Web. 15 Feb. 2015.

External links

  • Modern Analytical Ultracentrifugation in Protein Science: A tutorial review
  • Reversible Associations in Structural and Molecular Biology (RASMB -an Analytical Ultracentrifugation Forum)
  • Analytical Ultracentrifugation as a Contemporary Biomolecular Research Tool.
  • Multi-signal analysis
  • Gilbert-Jenkins theory
  • Report on an ultracentrifuge explosion.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.