World Library  
Flag as Inappropriate
Email this Article

Unsupervised learning

Article Id: WHEBN0000233497
Reproduction Date:

Title: Unsupervised learning  
Author: World Heritage Encyclopedia
Language: English
Subject: Pattern recognition, Artificial neural network, Deep learning, Artificial intelligence, Deep belief network
Collection: MacHine Learning
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Unsupervised learning

In machine learning, the problem of unsupervised learning is that of trying to find hidden structure in unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised learning from supervised learning and reinforcement learning.

Unsupervised learning is closely related to the problem of density estimation in statistics.[1] However unsupervised learning also encompasses many other techniques that seek to summarize and explain key features of the data. Many methods employed in unsupervised learning are based on data mining methods used to preprocess data.

Approaches to unsupervised learning include:

Among vigilance parameter. ART networks are also used for many pattern recognition tasks, such as automatic target recognition and seismic signal processing. The first version of ART was "ART1", developed by Carpenter and Grossberg (1988).[4]

Contents

  • Method of moments 1
  • See also 2
  • Notes 3
  • Further reading 4

Method of moments

One of the approaches in unsupervised learning is the method of moments. In the method of moments, the unknown parameters (of interest) in the model are related to the moments of one or more random variables, and thus, these unknown parameters can be estimated given the moments. The moments are usually estimated from samples in an empirical way. The basic moments are first and second order moments. For a random vector, the first order moment is the mean vector, and the second order moment is the covariance matrix (when the mean is zero). Higher order moments are usually represented using tensors which are the generalization of matrices to higher orders as multi-dimensional arrays.

In particular, the method of moments is shown to be effective in learning the parameters of latent variable models.[5] Latent variable models are statistical models where in addition to the observed variables, a set of latent variables also exists which is not observed. A highly practical example of latent variable models in machine learning is the topic modeling which is a statistical model for generating the words (observed variables) in the document based on the topic (latent variable) of the document. In the topic modeling, the words in the document are generated according to different statistical parameters when the topic of the document is changed. It is shown that method of moments (tensor decomposition techniques) consistently recover the parameters of a large class of latent variable models under some assumptions.[5]

Expectation–maximization algorithm (EM) is also one of the most practical methods for learning latent variable models. But, it can be stuck in local optima, and the global convergence of the algorithm to the true unknown parameters of the model is not guaranteed. While, for the method of moments, the global convergence is guaranteed under some conditions.[5]

See also

Notes

  1. ^ Jordan, Michael I.; Bishop, Christopher M. (2004). "Neural Networks". In Allen B. Tucker. Computer Science Handbook, Second Edition (Section VII: Intelligent Systems). Boca Raton, FL: Chapman & Hall/CRC Press LLC.  
  2. ^ Hastie,Trevor,Robert Tibshirani, Friedman,Jerome (2009). The Elements of Statistical Learning: Data mining,Inference,and Prediction. New York: Springer. pp. 485–586.  
  3. ^ Acharyya, Ranjan (2008); A New Approach for Blind Source Separation of Convolutive Sources, ISBN 978-3-639-07797-1 (this book focuses on unsupervised learning with Blind Source Separation)
  4. ^ Carpenter, G.A. and Grossberg, S. (1988). "The ART of adaptive pattern recognition by a self-organizing neural network" (PDF). Computer 21: 77–88.  
  5. ^ a b c Anandkumar, Animashree; Ge, Rong; Hsu, Daniel; Kakade, Sham; Telgarsky, Matus (2014). "Tensor Decompositions for Learning Latent Variable Models" (PDF). Journal of Machine Learning Research (JMLR) 15: 2773−2832. 

Further reading

  • Bousquet, O.; von Luxburg, U.; Raetsch, G., eds. (2004). Advanced Lectures on Machine Learning. Springer-Verlag.  
  •  
  • Hastie, Trevor; Tibshirani, Robert (2009). The Elements of Statistical Learning: Data mining,Inference,and Prediction. New York: Springer. pp. 485–586.  
  • ) neural networks (This book focuses on unsupervised learning in  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.