World Library  
Flag as Inappropriate
Email this Article

Upper bound

Article Id: WHEBN0008731030
Reproduction Date:

Title: Upper bound  
Author: World Heritage Encyclopedia
Language: English
Subject: Meander (mathematics), Total functional programming
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Upper bound

This article is about precise bounds. For Asymptotic bounds, see Big O notation.

In mathematics, especially in order theory, an upper bound of a subset S of some partially ordered set (K, ≤) is an element of K which is greater than or equal to every element of S.[1] The term lower bound is defined dually as an element of K which is less than or equal to every element of S. A set with an upper bound is said to be bounded from above by that bound, a set with a lower bound is said to be bounded from below by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.

Properties

A subset S of a partially ordered set P may fail to have any bounds or may have many different upper and lower bounds. By transitivity, any element greater than or equal to an upper bound of S is again an upper bound of S, and any element less than or equal to any lower bound of S is again a lower bound of S. This leads to the consideration of least upper bounds (or suprema) and greatest lower bounds (or infima).

The bounds of a subset S of a partially ordered set K may or may not be elements of S itself. If S contains an upper bound then that upper bound is unique and is called the greatest element of S. The greatest element of S (if it exists) is also the least upper bound of S. A special situation does occur when a subset is equal to the set of lower bounds of its own set of upper bounds. This observation leads to the definition of Dedekind cuts.

The empty subset ∅ of a partially ordered set K is conventionally considered to be both bounded from above and bounded from below with every element of P being both an upper and lower bound of ∅.

Examples

2 and 5 are both lower bounds for the set { 5, 10, 34, 13934 }, but 8 is not. 42 is both an upper and a lower bound for the set { 42 }; all other numbers are either an upper bound or a lower bound for that set.

Every subset of the natural numbers has a lower bound, since the natural numbers have a least element (0, or 1 depending on the exact definition of natural numbers). An infinite subset of the natural numbers cannot be bounded from above. An infinite subset of the integers may be bounded from below or bounded from above, but not both. An infinite subset of the rational numbers may or may not be bounded from below and may or may not be bounded from above.

Every finite subset of a non-empty totally ordered set has both upper and lower bounds.

Bounds of functions

The definitions can be generalised to functions and even sets of functions.

Given a function Template:Italics correction with domain Template:Mvar and a partially ordered set (K, ≤) as codomain, an element Template:Mvar of Template:Mvar is an upper bound of Template:Italics correction if yTemplate:Italics correction(x) for each Template:Mvar in Template:Mvar. The upper bound is called sharp if equality holds for at least one value of Template:Mvar.

Function Template:Mvar defined on domain Template:Mvar and having the same codomain (K, ≤) is an upper bound of Template:Italics correction if g(x) ≥ Template:Italics correction(x) for each Template:Mvar in Template:Mvar.

Function Template:Mvar is further said to be an upper bound of a set of functions if it is an upper bound of each function in that set.

The notion of lower bound for (sets of) functions is defined analogously, with ≤ replacing ≥.

See also

References

de:Schranke (Mathematik)

pl:Kresy dolny i górny

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.