World Library  
Flag as Inappropriate
Email this Article
 

Warm autoimmune hemolytic anemia

Warm antibody autoimmune hemolytic anemia
Classification and external resources
ICD-10 D59.1
ICD-9-CM 283.0
DiseasesDB 29723

Warm Antibody Autoimmune Hemolytic Anemia (WAIHA) is the most common of the autoimmune hemolytic diseases.[1] About half of the cases are idiopathic, with the other half attributable to a predisposing condition or medications being taken. Contrary to cold autotimmune hemolytic anemia (e.g. cold agglutinin disease and paroxysmal cold hemoglobinuria) which happens in cold temperature (28-31°C), WAIHA happens in body temperature.

Contents

  • Pathophysiology 1
  • Causes 2
  • Clinical findings 3
  • Diagnosis 4
  • Treatment 5
  • See also 6
  • References 7
  • External links 8

Pathophysiology

The most common antibody involved in warm antibody AIHA is IgG, though sometimes IgA is found. The IgG antibodies attach to a red blood cell, leaving their FC portion exposed with maximal reactivity at 37°C (versus cold antibody induced hemolytic anemia whose antibodies only bind red blood cells at low body temperatures, typically 28-31°C). The FC region is recognized and grabbed onto by FC receptors found on monocytes and macrophages in the spleen. These cells will pick off portions of the red cell membrane, almost like they are taking a bite. The loss of membrane causes the red blood cells to become spherocytes. Spherocytes are not as flexible as normal RBCs, and will be singled-out for destruction in the red pulp of the spleen as well as other portions of the reticuloendothelial system. The red blood cells trapped in the spleen cause the spleen to enlarge, leading to the splenomegaly often seen in these patients.

There are two models for this: the hapten model and the autoantibody model. The hapten model proposes that certain drugs, especially penicillin and cephalosporins, will bind to certain proteins on the red cell membrane and act as haptens (small molecules that can elicit an immune response only when attached to a large carrier such as a protein; the carrier may be one that also does not elicit an immune response by itself). Antibodies are created against the protein-drug complex, leading to the destructive sequence described above. The autoantibody model proposes that, through a mechanism not yet understood, certain drugs will cause antibodies to be made against red blood cells which again leads to the same destructive sequence.

It is possible for it to occur in an immunocompromised patient.[2]

Causes

AIHA may be:

Clinical findings

Laboratory findings include severe anemia, increased mean corpuscular volume (MCV, due to the presence of a large number of young erythrocytes), and hyperbilirubinemia (from increased red cell destruction) that can be of the conjugated or unconjugated type.

Diagnosis

Diagnosis is made by a positive direct Coombs test, other lab tests, and clinical examination and history. The direct Coombs test looks for antibodies attached to the surface of red blood cells.

Treatment

Corticosteroids and immunoglobulins are two commonly used treatments for warm antibody AIHA. Initial medical treatment consists of prednisone. If ineffective, splenectomy should be considered.

If refractory to both these therapies, other options include rituximab,[5][6] danazol, cyclosphosphamide, azathioprine, or cyclosporine.

High dose intravenous immune globulin may be effective in controlling hemolysis, but the benefit is short lived (1–4 weeks), and the therapy is very expensive.

See also

References

  1. ^ Cotran, Ramzi S.; Kumar, Vinay; Fausto, Nelson; Nelso Fausto; Robbins, Stanley L.; Abbas, Abul K. (2005). Robbins and Cotran pathologic basis of disease. St. Louis, Mo: Elsevier Saunders. p. 637.  
  2. ^ Nowak-Wegrzyn A, King KE, Shirey RS, Chen AR, McDonough C, Lederman HM (May 2001). "Fatal warm autoimmune hemolytic anemia resulting from IgM autoagglutinins in an infant with severe combined immunodeficiency". J. Pediatr. Hematol. Oncol. 23 (4): 250–2.  
  3. ^ a b c AUTOIMMUNE HEMOLYTIC ANEMIA (AIHA) By J.L. Jenkins. The Regional Cancer Center. 2001
  4. ^ Citation: H. Rehman : Hemolytic Anemia following Mycoplasma Infection . The Internet Journal of Hematology. 2008 Volume 4 Number 1 [1]
  5. ^ Morselli M, Luppi M, Potenza L, et al. (May 2002). "Mixed warm and cold autoimmune hemolytic anemia: complete recovery after 2 courses of rituximab treatment". Blood 99 (9): 3478–9.  
  6. ^ Bussone G, Ribeiro E, Dechartres A, et al. (December 2008). "Efficacy and safety of rituximab in adults' warm antibody autoimmune haemolytic anemia: Retrospective analysis of 27 cases". Am. J. Hematol. 84 (3): 153–7.  

External links

  • Case report of warm-antibody autoimmune hemolytic anemia with typical laboratory findings. Clinical Cases and Images.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.