Wave-formed ripples

In sedimentology, wave-formed ripples or wave-formed ripple marks are a feature of sediments (sandstones, limestones, siltstones) and dunes. These ripple marks are often characterised (and thus distinguished from current ripples) by symmetric cross sections and long relatively straight crests, which may commonly bifurcate. Commonly, these crests can be truncated by subsequent flows. Their wavelength (periodicity) depends on the sediment grain size, water depth and water-particle orbits in the waves. On tidal flats the pattern of wave-formed ripples may be complicated, as a product of changing depth and wind and tidal runoff directions.[1] Symmetrical ripples are commonly found in shallow waters. Beaches are a good environment in which to locate these ripples.

While wave-formed ripples are traditionally described as symmetrical, asymmetric wave ripples are common in shallow waters along sandy shores. They are produced by bottom oscillations generated by passing breaker waves, which have unequal intensity in opposite directions.[2]

Wave-formed ripples indicate an environment with weak currents where water motion is dominated by wave oscillations.[3]

Although symmetrical ripples are also called bi-directional ripples there is a difference between them. Bi-directional ripples are rarely symmetrical due to the difference in force of the two directions, where as the wave formed or oscillation ripples are formed from the circular water movement pattern of water molecules. These ripples are formed parallel to shore line. They usually display rounded troughs and rounded crests.


Ripples are relatively small, elongated ridges that form on bed surfaces perpendicular to current flow. With continuous current flow in one direction asymmetrical ripples are formed. Asymmetrical ripples contain a steeper slope downstream. With an alternation in current flow from one direction to the opposite symmetrical ripples are formed. Symmetrical ripples tend to have the same slope on both sides of the crest.[6]


Symmetrical ripples are formed as water molecules oscillate in small circles. A particle of water within a wave does not move with the wave but rather it moves in a small circle between the wave crest and wave trough. This movement of water molecules is the same for all water molecules effected by the wave. The water molecules continue to do this to a depth equal to 1/2 the wave length. The water molecule traveling in a circular patern interacts with the sediment on the floor and moves the sediment into symmetrical ripples. These ripples can be either straight crested or sinuous crested ripples.[7]

See also


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.