World Library  
Flag as Inappropriate
Email this Article

Boomerang Attack

Article Id: WHEBN0002137332
Reproduction Date:

Title: Boomerang Attack  
Author: World Heritage Encyclopedia
Language: English
Subject: COCONUT98, Threefish, Hash function security summary, Differential cryptanalysis, SHA-1
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Boomerang Attack

Boomerang attack

In cryptography, the boomerang attack is a method for the cryptanalysis of block ciphers based on differential cryptanalysis. The attack was published in 1999 by David Wagner, who used it to break the COCONUT98 cipher.

The boomerang attack has allowed new avenues of attack for many ciphers previously deemed safe from differential cryptanalysis.

Refinements on the boomerang attack have been published: the amplified boomerang attack, then the rectangle attack.

The attack

The boomerang attack is based on differential cryptanalysis. In differential cryptanalysis, an attacker exploits how differences in the input to a cipher (the plaintext) can affect the resultant difference at the output (the ciphertext). A high-probability "differential" (that is, an input difference that will produce a likely output difference) is needed that covers all, or nearly all, of the cipher. The boomerang attack allows differentials to be used which cover only part of the cipher.

The attack attempts to generate a so-called "quartet" structure at a point halfway through the cipher. For this purpose, say that the encryption action, E, of the cipher can be split into two consecutive stages, E0 and E1, so that E(M) = E1(E0(M)), where M is some plaintext message. Suppose we have two differentials for the two stages; say,

\Delta\to\Delta^*

for E0, and

\nabla\to\nabla^* for E1-1 (the decryption action of E1).

The basic attack proceeds as follows:

  • Choose a random plaintext P and calculate P' = P \oplus \Delta.
  • Request the encryptions of P and P' to obtain C = E(P) and C' = E(P')
  • Calculate D = C \oplus \nabla and D' = C' \oplus \nabla
  • Request the decryptions of D and D' to obtain Q = E^{-1}(D) and Q' = E^{-1}(D')
  • Compare Q and Q'; when the differentials hold, Q \oplus Q' = \Delta.

Application to specific ciphers

One attack on KASUMI, a block cipher used in 3GPP, is a related-key rectangle attack which breaks the full eight rounds of the cipher faster than exhaustive search (Biham et al., 2005). The attack requires 254.6 chosen plaintexts, each of which has been encrypted under one of four related keys, and has a time complexity equivalent to 276.1 KASUMI encryptions.

References

External links

  • Boomerang attack — explained by John Savard
  • Nathan Keller's homepage
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.