World Library  
Flag as Inappropriate
Email this Article

Subspace (topology)

Article Id: WHEBN0000060124
Reproduction Date:

Title: Subspace (topology)  
Author: World Heritage Encyclopedia
Language: English
Subject: Hausdorff space, Product topology, Embedding, Quotient space (topology), Totally disconnected space, Countably generated space
Publisher: World Heritage Encyclopedia

Subspace (topology)

In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology (or the relative topology, or the induced topology, or the trace topology).


Given a topological space (X, \tau) and a subset S of X, the subspace topology on S is defined by

\tau_S = \lbrace S \cap U \mid U \in \tau \rbrace.

That is, a subset of S is open in the subspace topology if and only if it is the intersection of S with an open set in (X, \tau). If S is equipped with the subspace topology then it is a topological space in its own right, and is called a subspace of (X, \tau). Subsets of topological spaces are usually assumed to be equipped with the subspace topology unless otherwise stated.

Alternatively we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map

\iota: S \hookrightarrow X

is continuous.

More generally, suppose i is an injection from a set S to a topological space X. Then the subspace topology on S is defined as the coarsest topology for which i is continuous. The open sets in this topology are precisely the ones of the form i^{-1}(U) for U open in X. S is then homeomorphic to its image in X (also with the subspace topology) and i is called a topological embedding.


In the following, R represents the real numbers with their usual topology.

  • The subspace topology of the natural numbers, as a subspace of R, is the discrete topology.
  • The rational numbers Q considered as a subspace of R do not have the discrete topology (the point 0 for example is not an open set in Q). If a and b are rational, then the intervals (a, b) and [a, b] are respectively open and closed, but if a and b are irrational, then the set of all x with a is both open and closed.
  • The set [0,1] as a subspace of R is both open and closed, whereas as a subset of R it is only closed.
  • As a subspace of R, [0,1]\cup[2,3] is composed of two disjoint open subsets (which happen also to be closed), and is therefore a disconnected space.
  • Let S = [0,c) be a subspace of the real line R. Then [0,c/2) is open in S but not in R. Likewise [½, 1) is closed in S but not in R. S is both open and closed as a subset of itself but not as a subset of R.


The subspace topology has the following characteristic property. Let Y be a subspace of X and let i : Y \to X be the inclusion map. Then for any topological space Z a map f : Z\to Y is continuous if and only if the composite map i\circ f is continuous.

This property is characteristic in the sense that it can be used to define the subspace topology on Y.

We list some further properties of the subspace topology. In the following let S be a subspace of X.

  • If f:X\to Y is continuous the restriction to S is continuous.
  • If f:X\to Y is continuous then f:X\to f(X) is continuous.
  • The closed sets in S are precisely the intersections of S with closed sets in X.
  • If A is a subspace of S then A is also a subspace of X with the same topology. In other words the subspace topology that A inherits from S is the same as the one it inherits from X.
  • Suppose S is an open subspace of X. Then a subspace of S is open in S if and only if it is open in X.
  • Suppose S is a closed subspace of X. Then a subspace of S is closed in S if and only if it is closed in X.
  • If B is a base for X then B_S = \{U\cap S : U \in B\} is a basis for S.
  • The topology induced on a subset of a metric space by restricting the metric to this subset coincides with subspace topology for this subset.

Preservation of topological properties

If a topological space having some topological property implies its subspaces have that property, then we say the property is hereditary. If only closed subspaces must share the property we call it weakly hereditary.

See also


  • Bourbaki, Nicolas, Elements of Mathematics: General Topology, Addison-Wesley (1966)
  • Willard, Stephen. General Topology, Dover Publications (2004) ISBN 0-486-43479-6
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.