World Library  
Flag as Inappropriate
Email this Article

Utricle (ear)

Article Id: WHEBN0000534487
Reproduction Date:

Title: Utricle (ear)  
Author: World Heritage Encyclopedia
Language: English
Subject: Saccule, Inner ear, Macula of utricle, Cochlea, Vestibule of the ear
Collection: Ear, Vestibular System
Publisher: World Heritage Encyclopedia

Utricle (ear)

Components of the inner ear including the utricle
Latin utriculus
Anatomical terminology

The utricle, or utriculus (vertebrate inner ear. The utricle and the saccule are parts of the balancing apparatus (membranous labyrinth) located within the vestibule of the bony labyrinth (small oval chamber).[1]

These use small stones and a viscous fluid to stimulate hair cells to detect motion and orientation. The utricle detects linear accelerations and head-tilts in the horizontal plane.


  • Structure 1
    • Histology 1.1
  • Function 2
  • See also 3
  • References 4
  • External links 5


Inner ear, showing utricle near centre

The utricle is larger than the saccule and is of an oblong form, compressed transversely, and occupies the upper and back part of the vestibule, lying in contact with the recessus ellipticus and the part below it. The macula utricle is a thickening in the wall of the utricle where the epithelium contains vestibular hair cells that allows a person to perceive changes in longitudinal acceleration as well as effects of gravity.

The gelatinous layer and the statoconia together are referred to as the otolithic membrane, where the tips of the stereocilia and kinocilium are embedded. When the head is tilted such that gravity pulls on the statoconia the gelatinous layer is pulled in the same direction also causing the sensory hairs to bend.

Within the utricle is a small 2 by 3 mm patch of hair cells called the macula utricle. The macula utricle, which lies horizontally on the floor of the utricle, contains the hair cells. These hair cells are mechanoreceptors which consist of 40 to 70 steriocilia and only one true cilium called a kinocilium. The kinocilium is the only sensory aspect of the hair cell and is what causes hair cell polarization. The tips of these steriocilia and kinocilium are embedded in a gelatinous otolithic membrane.[2] This membrane is weighted with calcium carbonate-protein granules called otoliths. The otolithic membrane adds weight to the tops of the hair cells and increases their inertia. The addition in weight and inertia is vital to the utricle's ability to detect linear acceleration, as described below, and to determine the orientation of the head.[3]


The macula consists of three layers. The bottom layer is made of sensory hair cells which are embedded in bottom of a gelatinous layer. Each hair cells consists of 40 to 70 steriocilia and a kinocilium, which lies in the middle of the steriocilia and is the most important receptor.

On top of this layer lie calcium carbonate crystals called statoconia or otoliths. The otoliths are relatively heavy, providing weight to the membrane as well as inertia. This allows for a greater sense of gravity and motion.

Labyrinthine activity responsible for the

  • Diagram at

External links

  1. ^ Moores, Kieth L. "Essential Clinical Anatomy" Lippincott Williams & Wilkins; Second Edition (2002).
  2. ^ Johnsson, LG; Hawkins JE, Jr (Sep 22, 1967). "Otolithic membranes of the saccule and utricle in man.". Science 157 (3795): 1454–6.  
  3. ^ Saladin, Kenneth S. (2010). Anatomy & physiology : the unity of form and function (5th ed.). Dubuque: McGraw-Hill.  
  4. ^ Cohen, B; Suzuki, JI; Raphan, T (Oct 3, 1983). "Role of the otolith organs in generation of horizontal nystagmus: effects of selective labyrinthine lesions.". Brain Research 276 (1): 159–64.  
  5. ^ Saladin, Kenneth S. Anatomy & Physiology: the Unity of Form and Function. Dubuque: McGraw-Hill, 2010. Print.

This article incorporates text in the public domain from the 20th edition of Gray's Anatomy (1918)


See also

The utricle contains mechanoreceptors called hair cells that distinguish between degrees of tilting of the head, thanks to their apical stereocilia set-up. These are covered by otolith which, due to gravity, pull on the stereocilia and tilt them. Depending on whether the tilt is in the direction of the kinocilium or not, the resulting hair cell polarisation is excitatory (depolarising) or inhibitory (hyperpolarisation), respectively. Any orientation of the head causes a combination of stimulation to the utricles and saccules of the two ears. The brain interprets head orientation by comparing these inputs to each other and to other input from the eyes and stretch receptors in the neck, thereby detecting whether only the head is tilted or the entire body is tipping. The inertia of the otolithic membranes is especially important in detecting linear acceleration. Suppose you are sitting in a car at a stoplight and then begin to move. The otolithic membrane of the macula utriculi briefly lags behind the rest of the tissues, bends the stereocilia backward, and stimulates the cells. When you stop at the next light, the macula stops but the otolithic membrane keeps going for a moment, bending the stereocilia forward. The hair cells convert this pattern of stimulation to nerve signals, and the brain is thus advised of changes in your linear velocity.[5] This signal to the vestibular nerve (which takes it to the brainstem) does not adapt with time. The effect of this is that, for example, an individual lying down to sleep will continue to detect that they are lying down hours later when they awaken.

Illustration of otolith organs showing detail of utricle, otoconia, endolymph, cupula, macula, hair cell filaments, and saccular nerve


The ductus utriculosaccularis comes off of the anterior wall of the utricle and opens into the ductus endolymphaticus.

The cavity of the utricle communicates behind with the semicircular ducts by five orifices.

That portion which is lodged in the recess forms a pouch or cul-de-sac, the floor and anterior wall of which are thickened and form the macula acustica utriculi, which receives the utricular filaments of the acoustic nerve.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.