World Library  
Flag as Inappropriate
Email this Article

Snub trihexagonal tiling

Article Id: WHEBN0002864718
Reproduction Date:

Title: Snub trihexagonal tiling  
Author: World Heritage Encyclopedia
Language: English
Subject: Snub trioctagonal tiling, Hexagonal tiling small table, Pentagonal icositetrahedron, Gilbert tessellation, Pinwheel tiling
Collection: Chiral Figures, Euclidean Tilings, Isogonal Tilings, Semiregular Tilings, Snub Tilings
Publisher: World Heritage Encyclopedia

Snub trihexagonal tiling

Snub trihexagonal tiling
Snub trihexagonal tiling
Type Semiregular tiling
Vertex configuration
Schläfli symbol sr{6,3}
Wythoff symbol | 6 3 2
Coxeter diagram
Symmetry p6, [6,3]+, (632)
Rotation symmetry p6, [6,3]+, (632)
Bowers acronym Snathat
Dual Floret pentagonal tiling
Properties Vertex-transitive chiral

In geometry, the snub hexagonal tiling (or snub trihexagonal tiling) is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol of sr{3,6}. The snub tetrahexagonal tiling is a related hyperbolic tiling with Schläfli symbol sr{4,6}.

Conway calls it a snub hextille, constructed as a snub operation applied to a hexagonal tiling (hextille).

There are 3 regular and 8 semiregular tilings in the plane. This is the only one which does not have a reflection as a symmetry.

There is only one uniform coloring of a snub trihexagonal tiling. (Naming the colors by indices ( 11213.)


  • Circle packing 1
  • Related polyhedra and tilings 2
    • Symmetry mutations 2.1
    • Floret pentagonal tiling 2.2
      • Variations 2.2.1
      • Related tilings 2.2.2
  • See also 3
  • References 4
  • External links 5

Circle packing

The snub trihexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 5 other circles in the packing (kissing number).[1] The lattice domain (red rhombus) repeats 6 distinct circles. The hexagonal gaps can be filled by exactly one circle, leading to the densest packing from the triangular tiling#circle packing.

Related polyhedra and tilings

There is one related 2-uniform tiling, which mixes the vertex configurations of the snub trihexagonal tiling, and the triangular tiling,
Uniform hexagonal/triangular tilings
Symmetry: [6,3], (*632) [6,3]+, (632)
{6,3} t{6,3} r{6,3} t{3,6} {3,6} rr{6,3} tr{6,3} sr{6,3}
Config. 63 3.12.12 (6.3)2 6.6.6 36 4.6.12

Symmetry mutations

This semiregular tiling is a member of a sequence of snubbed polyhedra and tilings with vertex figure ( and Coxeter–Dynkin diagram . These figures and their duals have (n32) rotational symmetry, being in the Euclidean plane for n=6, and hyperbolic plane for any higher n. The series can be considered to begin with n=2, with one set of faces degenerated into digons.

n32 symmetry mutations of snub tilings:
Spherical Euclidean Compact hyperbolic Paracomp.
232 332 432 532 632 732 832 ∞32
Config. V3. V3. V3. V3. V3. V3. V3. V3.3.3.3.∞

Floret pentagonal tiling

Floret pentagonal tiling
Type Dual semiregular tiling
Coxeter diagram
Faces irregular pentagons
Face configuration V3.
Symmetry group p6, [6,3]+, (632)
Rotation group p6, [6,3]+, (632)
Dual Snub trihexagonal tiling
Properties face-transitive, chiral

In geometry, the floret pentagonal tiling or rosette pentagonal tiling is a dual semiregular tiling of the Euclidean plane. It is one of 15 known isohedral pentagon tilings. It is given its name because its six pentagonal tiles radiate out from a central point, like petals on a flower.[2] Conway calls it a 6-fold pentille.[3] Each of its pentagonal faces has four 120° and one 60° angle.

It is the dual of the uniform tiling, snub trihexagonal tiling,[4] and has rotational symmetry of orders 6-3-2 symmetry.


The floret pentagonal tiling has geometric variations with unequal edge lengths and rotational symmetry, which is given as monohedral pentagonal tiling type 5. In one limit, an edge-length goes to zero and it becomes a deltoidal trihexagonal tiling.

(See animation)

a=b, d=e
A=60°, D=120°

Deltoidal trihexagonal tiling

a=b, d=e, c=0
60°, 90°, 90°, 120°

Related tilings

Dual uniform hexagonal/triangular tilings
Symmetry: [6,3], (*632) [6,3]+, (632)
V63 V3.122 V(3.6)2 V36 V3.4.12.4 V.4.6.12 V34.6

See also


  1. ^ Order in Space: A design source book, Keith Critchlow, p.74-75, pattern E
  2. ^ Five space-filling polyhedra by Guy Inchbald
  3. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [3] (Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table)
  4. ^ Weisstein, Eric W., "Dual tessellation", MathWorld.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [4]
  • , p. 58-65) Regular and uniform tilings (Chapter 2.1:  
  • p. 39  
  • Keith Critchlow, Order in Space: A design source book, 1970, p. 69-61, Pattern R, Dual p. 77-76, pattern 5
  • Dale Seymour and Jill Britton, Introduction to Tessellations, 1989, ISBN 978-0866514613, pp. 50–56, dual rosette tiling p. 96, p. 114

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.