#jsDisabledContent { display:none; } My Account |  Register |  Help

# Snub trihexagonal tiling

Article Id: WHEBN0002864718
Reproduction Date:

 Title: Snub trihexagonal tiling Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Snub trihexagonal tiling

Snub trihexagonal tiling

Type Semiregular tiling
Vertex configuration
3.3.3.3.6
Schläfli symbol sr{6,3}
Wythoff symbol | 6 3 2
Coxeter diagram
Symmetry p6, [6,3]+, (632)
Rotation symmetry p6, [6,3]+, (632)
Bowers acronym Snathat
Dual Floret pentagonal tiling
Properties Vertex-transitive chiral

In geometry, the snub hexagonal tiling (or snub trihexagonal tiling) is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol of sr{3,6}. The snub tetrahexagonal tiling is a related hyperbolic tiling with Schläfli symbol sr{4,6}.

Conway calls it a snub hextille, constructed as a snub operation applied to a hexagonal tiling (hextille).

There are 3 regular and 8 semiregular tilings in the plane. This is the only one which does not have a reflection as a symmetry.

There is only one uniform coloring of a snub trihexagonal tiling. (Naming the colors by indices (3.3.3.3.6): 11213.)

## Contents

• Circle packing 1
• Related polyhedra and tilings 2
• Symmetry mutations 2.1
• Floret pentagonal tiling 2.2
• Variations 2.2.1
• Related tilings 2.2.2
• References 4

## Circle packing

The snub trihexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 5 other circles in the packing (kissing number).[1] The lattice domain (red rhombus) repeats 6 distinct circles. The hexagonal gaps can be filled by exactly one circle, leading to the densest packing from the triangular tiling#circle packing.

## Related polyhedra and tilings

There is one related 2-uniform tiling, which mixes the vertex configurations of the snub trihexagonal tiling, 3.3.3.3.6 and the triangular tiling, 3.3.3.3.3.3.
Uniform hexagonal/triangular tilings
Fundamental
domains
Symmetry: [6,3], (*632) [6,3]+, (632)
{6,3} t{6,3} r{6,3} t{3,6} {3,6} rr{6,3} tr{6,3} sr{6,3}
Config. 63 3.12.12 (6.3)2 6.6.6 36 3.4.6.4 4.6.12 3.3.3.3.6

### Symmetry mutations

This semiregular tiling is a member of a sequence of snubbed polyhedra and tilings with vertex figure (3.3.3.3.n) and Coxeter–Dynkin diagram . These figures and their duals have (n32) rotational symmetry, being in the Euclidean plane for n=6, and hyperbolic plane for any higher n. The series can be considered to begin with n=2, with one set of faces degenerated into digons.

n32 symmetry mutations of snub tilings: 3.3.3.3.n
Symmetry
n32
Spherical Euclidean Compact hyperbolic Paracomp.
232 332 432 532 632 732 832 ∞32
Snub
figures
Config. 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.∞
Gryro
figures
Config. V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.∞

### Floret pentagonal tiling

Floret pentagonal tiling
Type Dual semiregular tiling
Coxeter diagram
Faces irregular pentagons
Face configuration V3.3.3.3.6
Symmetry group p6, [6,3]+, (632)
Rotation group p6, [6,3]+, (632)
Dual Snub trihexagonal tiling
Properties face-transitive, chiral

In geometry, the floret pentagonal tiling or rosette pentagonal tiling is a dual semiregular tiling of the Euclidean plane. It is one of 15 known isohedral pentagon tilings. It is given its name because its six pentagonal tiles radiate out from a central point, like petals on a flower.[2] Conway calls it a 6-fold pentille.[3] Each of its pentagonal faces has four 120° and one 60° angle.

It is the dual of the uniform tiling, snub trihexagonal tiling,[4] and has rotational symmetry of orders 6-3-2 symmetry.

#### Variations

The floret pentagonal tiling has geometric variations with unequal edge lengths and rotational symmetry, which is given as monohedral pentagonal tiling type 5. In one limit, an edge-length goes to zero and it becomes a deltoidal trihexagonal tiling.

 (See animation) a=b, d=e A=60°, D=120° Deltoidal trihexagonal tiling a=b, d=e, c=0 60°, 90°, 90°, 120°

#### Related tilings

Dual uniform hexagonal/triangular tilings
Symmetry: [6,3], (*632) [6,3]+, (632)
V63 V3.122 V(3.6)2 V36 V3.4.12.4 V.4.6.12 V34.6

## References

1. ^ Order in Space: A design source book, Keith Critchlow, p.74-75, pattern E
2. ^ Five space-filling polyhedra by Guy Inchbald
3. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [3] (Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table)
4. ^ Weisstein, Eric W., "Dual tessellation", MathWorld.
• John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [4]
• , p. 58-65) Regular and uniform tilings (Chapter 2.1:
• p. 39
• Keith Critchlow, Order in Space: A design source book, 1970, p. 69-61, Pattern R, Dual p. 77-76, pattern 5
• Dale Seymour and Jill Britton, Introduction to Tessellations, 1989, ISBN 978-0866514613, pp. 50–56, dual rosette tiling p. 96, p. 114