World Library  
Flag as Inappropriate
Email this Article

Classical Logic

Article Id: WHEBN0003192556
Reproduction Date:

Title: Classical Logic  
Author: World Heritage Encyclopedia
Language: English
Subject: Logic, Trivialism, Philosophical logic, Outline of logic, Non-classical logic
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Classical Logic

Non-classical logics (and sometimes alternative logics) is the name given to formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is done, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth.[1]

Philosophical logic, especially in theoretical computer science, is understood to encompass and focus on non-classical logics, although the term has other meanings as well.[2]

Examples of non-classical logics

Classification of non-classical logics

In Deviant Logic (1974) Susan Haack divided non-classical logics into deviant, quasi-deviant, and extended logics.[3] The proposed classification is non-exclusive; a logic may be both a deviation and an extension of classical logic.[4] A few other authors have adopted the main distinction between deviation and extension in non-classical logics.[5][6][7] John P. Burgess uses a similar classification but calls the two main classes anti-classical and extra-classical.[8]

In an extension, new and different logical constants are added, for instance the "\Box" in modal logic, which stands for "necessarily."[5] In extensions of a logic,

  • the set of well-formed formulas generated is a proper superset of the set of well-formed formulas generated by classical logic.
  • the set of theorems generated is a proper superset of the set of theorems generated by classical logic, but only in that the novel theorems generated by the extended logic are only a result of novel well-formed formulas.

(See also Conservative extension.)

In a deviation, the usual logical constants are used, but are given a different meaning than usual. Only a subset of the theorems from the classical logic hold. A typical example is intuitionistic logic, where the law of excluded middle does not hold.[8][7]

Additionally, one can identify a variations (or variants), where the content of the system remains the same, while the notation may change substantially. For instance many-sorted predicate logic is considered a just variation of predicate logic.[5]

This classification ignores however semantic equivalences. For instance, Gödel showed that all theorems from intuitionistic logic have an equivalent theorem in the classical modal logic S4. The result has been generalized to superintuitionistic logics and extensions of S4.[9]

The theory of abstract algebraic logic has also provided means to classify logics, with most results having been obtained for propositional logics. The current algebraic hierarchy of propositional logics has five levels, defined in terms of properties of their Leibniz operator: protoalgebraic, (finitely) equivalential, and (finitely) algebraizable.[10]

References

  1. ^ Logic for philosophy, Theodore Sider
  2. ^  
  3. ^  
  4. ^  
  5. ^ a b c  
  6. ^ Seiki Akama (1997). Logic, language, and computation. Springer. p. 3.  
  7. ^ a b Robert Hanna (2006). Rationality and logic. MIT Press. pp. 40–41.  
  8. ^ a b John P. Burgess (2009). Philosophical logic. Princeton University Press. pp. 1–2.  
  9. ^ Dov M. Gabbay; Larisa Maksimova (2005). Interpolation and definability: modal and intuitionistic logics. Clarendon Press. p. 61.  
  10. ^ D. Pigozzi (2001). "Abstract algebraic logic". In M. Hazewinkel. Encyclopaedia of mathematics: Supplement Volume III. Springer. pp. 2–13.  

Further reading

External links

  • Video of Graham Priest & Maureen Eckert on Deviant Logic
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.