World Library  
Flag as Inappropriate
Email this Article

Protocol spoofing

Article Id: WHEBN0003560982
Reproduction Date:

Title: Protocol spoofing  
Author: World Heritage Encyclopedia
Language: English
Subject: Spoof, Bandwidth-delay product, Telebit, Spoofing attack, Network protocols
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Protocol spoofing

Protocol spoofing is used in data communications to improve performance in situations where an existing protocol is inadequate, for example due to long delays or high error rates.

Note: In a computer security context, spoofing refers to various forms of falsification of data that are unrelated to the techniques discussed here. See spoofing attack.

Contents

  • Spoofing techniques 1
    • File transfer spoofing 1.1
    • TCP spoofing 1.2
    • RIP/SAP spoofing 1.3
  • See also 2
  • External links 3

Spoofing techniques

In most applications of protocol spoofing, a communications device such as a modem or router simulates ("spoofs") the remote endpoint of a connection to a locally attached host, while using a more appropriate protocol to communicate with a compatible remote device that performs the equivalent spoof at the other end of the communications link.

File transfer spoofing

Error correction and file transfer protocols typically work by calculating a checksum or CRC for a block of data known as a packet, and transmitting the resulting number at the end of the packet. At the other end the receiver re-calculates the number and compares it to what was sent from the remote machine. If the two match the packet was transmitted correctly, and the receiver sends an ACK to signal that it's ready to receive the next packet.

The time to transmit the ACK back to the sender is a function of the phone lines, as opposed to the modem's speed, and is typically about 1/10 of a second. For a protocol using small packets, this delay can be larger than the time needed to send a packet. For instance, the UUCP "g" protocol and Kermit both use 64-byte packets, which on a 9600 bit/s link takes about 1/20th of a second to send. XModem used a slightly larger 128 byte packet.

In early high-speed modems, before the introduction of echo cancellation in v.32 and later protocols, modems typically had a very slow "backchannel" for sending things like these ACKs back to the sender. On a ~18,000 bit/s TrailBlazer, for instance, the modem could send as many as 35 UUCP packets a second, but the backchannel offered only 75 bit/s, not nearly enough for the 35 bytes (280 bits) of ACK messages to get back in time to keep the transfer going.

Modems like TrailBlazer or Multi-Tech series address this by sending ACKs back from the local modem immediately. This allows the sending machine to continue streaming constantly with no interruptions. The data is then sent to the remote modem using an error-free link which requires considerably less backchannel overhead, invisibly stripping it off again at the far end. Likewise, the remote modem discards the ACKs being sent by the receiver's software.

TCP spoofing

TCP connections may suffer from performance limitations due to insufficient window size for links with high bandwidth x delay product, and on long-delay links such as those over GEO satellites, TCP's slow-start algorithm significantly delays connection startup. A spoofing router terminates the TCP connection locally and translates the TCP to protocols tailored to long delays over the satellite link such as XTP.

RIP/SAP spoofing

SAP and RIP periodically broadcast network information even if routing/service tables are unchanged. dial-on-demand WAN links in IPX networks therefore never become idle and won't disconnect. A spoofing router or modem will intercept the SAP and RIP broadcasts, and re-broadcast the advertisements from its own routing/service table that it only updates when the link is active for other reasons.

See also

External links

  • UUCP `g' Protocol
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.