World Library  
Flag as Inappropriate
Email this Article

Pairing-based cryptography

 

Pairing-based cryptography

Pairing-based cryptography is the use of a pairing between elements of two cryptographic groups to a third group with a mapping e :G_1 \times G_2 \to G_T to construct cryptographic systems.

Contents

  • Definition 1
  • Classification 2
  • Usage in cryptography 3
  • Cryptanalysis 4
  • References 5
  • External links 6

Definition

The following definition is commonly used in most academic papers.[1]

Let G_1, G_T be two cyclic groups of prime order q. A pairing is a map: e: G_1 \times G_1 \rightarrow G_T , which satisfies the following properties:

  1. Bilinearity: \forall a,b \in F_q^*,\ \forall P,Q \in G_1:\ e\left(P^a, Q^b\right) = e\left(P, Q\right)^{ab}
  2. Non-degeneracy: e\left(P, Q\right) \neq 1
  3. Computability: there exist an efficient algorithm to compute e

Classification

If the same group is used for the first two groups (i.e. G_1 = G_2), the pairing is called symmetric and is a mapping from two elements of one group to an element from a second group.

Some researchers classify pairing instantiations into three (or more) basic types:

  • Type 1: G_1 = G_2;
  • Type 2: G_1 \ne G_2 but there is an efficiently computable homomorphism \phi : G_2 \to G_1;
  • Type 3: G_1 \ne G_2 and there are no efficiently computable homomorphisms between G_1 and G_2.[2]

Usage in cryptography

If symmetric, pairings can be used to reduce a hard problem in one group to a different, usually easier problem in another group.

For example, in groups equipped with a bilinear mapping such as the Weil pairing or Tate pairing, generalizations of the computational Diffie–Hellman problem are believed to be infeasible while the simpler decisional Diffie–Hellman problem can be easily solved using the pairing function. The first group is sometimes referred to as a Gap Group because of the assumed difference in difficulty between these two problems in the group.

While first used for cryptanalysis,[3] pairings have since been used to construct many cryptographic systems for which no other efficient implementation is known, such as identity based encryption or attribute based encryption.

A contemporary example of using bilinear pairings is exemplified in the Boneh-Lynn-Shacham signature scheme.

Cryptanalysis

In June 2012 the National Institute of Information and Communications Technology (NICT), Kyushu University, and Fujitsu Laboratories Limited improved the previous bound for successfully computing a discrete logarithm on a supersingular elliptic curve from 676 bits to 923 bits.[4]

References

  1. ^ Koblitz, Neal; Menezes, Alfred (2005). "Pairing-Based cryptography at high security levels". LNCS 3796. 
  2. ^ Galbraith, Steven; Paterson, Kenneth; Smart, Nigel (2008). "Pairings for Cryptographers". Discrete Applied Mathematics 156 (16): 3113–3121. 
  3. ^ Menezes, Alfred J. Menezes; Okamato, Tatsuaki; Vanstone, Scott A. (1993). "Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field". IEEE Transactions On Information Theory 39 (5). 
  4. ^ "NICT, Kyushu University and Fujitsu Laboratories Achieve World Record Cryptanalysis of Next-Generation Cryptography". Press release from NICT. June 18, 2012. 

External links

  • Lecture on Pairing-Based Cryptography
  • The Pairing-Based Crypto Lounge
  • Ben Lynn's PBC Library


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.