 #jsDisabledContent { display:none; } My Account |  Register |  Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Robin boundary condition

Article Id: WHEBN0009945920
Reproduction Date:

 Title: Robin boundary condition Author: World Heritage Encyclopedia Language: English Subject: Collection: Boundary Conditions Publisher: World Heritage Encyclopedia Publication Date:

### Robin boundary condition

In mathematics, the Robin boundary condition (; properly French: ), or third type boundary condition, is a type of boundary condition, named after Victor Gustave Robin (1855–1897). When imposed on an ordinary or a partial differential equation, it is a specification of a linear combination of the values of a function and the values of its derivative on the boundary of the domain.

Robin boundary conditions are a weighted combination of Dirichlet boundary conditions and Neumann boundary conditions. This contrasts to mixed boundary conditions, which are boundary conditions of different types specified on different subsets of the boundary. Robin boundary conditions are also called impedance boundary conditions, from their application in electromagnetic problems, or convective boundary conditions, from their application in heat transfer problems (Hahn, 2012).

If Ω is the domain on which the given equation is to be solved and \partial\Omega denotes its boundary, the Robin boundary condition is:

a u + b \frac{\partial u}{\partial n} =g \qquad \text{on} ~ \partial \Omega\,

for some non-zero constants a and b and a given function g defined on \partial\Omega. Here, u is the unknown solution defined on \Omega and {\partial u}/{\partial n} denotes the normal derivative at the boundary. More generally, a and b are allowed to be (given) functions, rather than constants.

In one dimension, if, for example, \Omega = [0,1], the Robin boundary condition becomes the conditions:

a u(0) - bu'(0) =g(0)\,
a u(1) + bu'(1) =g(1).\,

notice the change of sign in front of the term involving a derivative: that is because the normal to [0,1] at 0 points in the negative direction, while at 1 it points in the positive direction.

Robin boundary conditions are commonly used in solving Sturm–Liouville problems which appear in many contexts in science and engineering.

In addition, the Robin boundary condition is a general form of the insulating boundary condition for convection–diffusion equations. Here, the convective and diffusive fluxes at the boundary sum to zero:

u_x(0)\,c(0) -D \frac{\partial c(0)}{\partial x}=0\,

where D is the diffusive constant, u is the convective velocity at the boundary and c is the concentration. The second term is a result of Fick's law of diffusion.

## See also

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.