This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0016796643 Reproduction Date:
In mathematical analysis, a domain is any connected open subset of a finite-dimensional vector space. This is a different concept than the domain of a function, though it is often used for that purpose, for example in partial differential equations and Sobolev spaces.
Various degrees of smoothness of the boundary of the domain are required for various properties of functions defined on the domain to hold, such as integral theorems (Green's theorem, Stokes theorem), properties of Sobolev spaces, and to define measures on the boundary and spaces of traces (generalized functions defined on the boundary). Commonly considered types of domains are domains with continuous boundary, Lipschitz boundary, C1 boundary, and so forth.
A Bounded domain is a domain which is a bounded set, while an Exterior or external domain is the interior of the complement of a bounded domain.
In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane ℂ. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.
In the study of several complex variables, the definition of a domain is extended to include any connected open subset of ℂn.
Definition. Eine offene Punktmenge heißt zusammenhängend, wenn man sie nicht als Summe von zwei offenen Punktmengen darstellen kann. Eine offene zusammenhängende Punktmenge heißt ein Gebiet.[1] — Constantin Carathéodory, (Carathéodory 1918, p. 222)
According to Hans Hahn,[2] the concept of a domain as an open connected set was introduced by Constantin Carathéodory in his famous book (Carathéodory 1918). Hahn also remarks that the word "Gebiet" ("Domain") was occasionally previously used as a synonym of open set.[3]
However, the term "domain" was occasionally used to identify closely related but slightly different concepts. For example, in his influential monographs on elliptic partial differential equations, Carlo Miranda uses the term "region" to identify an open connected set,[4][5] and reserves the term "domain" to identify an internally connected,[6] perfect set, each point of which is an accumulation point of interior points,[4] following his former master Mauro Picone:[7] according to this convention, if a set A is a region then its closure A is a domain.[4]
Bible, Latin, Literal translation, Language, Culture
California, Grateful Dead, San Francisco, Wayback Machine, Music
Mathematics, Calculus, Functional analysis, Discrete mathematics, Physics
Topology, Topological space, Differential topology, Clopen set, Metric spaces
Several complex variables, Complex analysis, Domain (mathematical analysis), Wilhelm Wirtinger, Partial differential operator
Mathematics, Temperature, Domain (mathematical analysis), Schur complement method, Mathematical Reviews
Complex analysis, Mathematics, Holomorphic function, Wirtinger derivatives, Leonhard Euler
Mathematics, Cauchy–Riemann equations, Sine, Functional analysis, Complex analysis