World Library  
Flag as Inappropriate
Email this Article

Multicritical point

Article Id: WHEBN0018450034
Reproduction Date:

Title: Multicritical point  
Author: World Heritage Encyclopedia
Language: English
Subject: Critical phenomena, Renormalization group, Critical exponent, Phase transition
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Multicritical point

Multicritical points are special points in the parameter space of thermodynamic or other systems with a continuous phase transition. At least two thermodynamic or other parameters must be adjusted to reach a multicritical point. At a multicritical point the system belongs to a universality class different from the "normal" universality class.

A more detailed definition requires concepts from the theory of critical phenomena, a branch of physics that reached a very satisfying state in the 1970s.

Definition

The union of all the points of the parameter space for which the system is critical is called a critical manifold.

A critical curve terminating at a multicritical point (schematic).

As an example consider a substance ferromagnetic below a transition temperature T_{c}, and paramagnetic above T_c. The parameter space here is the temperature axis, and the critical manifold consists of the point T_c. Now add hydrostatic pressure P to the parameter space. Under hydrostatic pressure the substance normally still becomes ferromagnetic below a temperature T_{c}(P).

This leads to a critical curve in the (T,P) plane - a 1-dimensional critical manifold. Also taking into account shear stress K as a thermodynamic parameter leads to a critical surface T_c(P,K) in the (T,P,K) parameter space - a 2-dimensional critical manifold. Critical manifolds of dimension d > 1 and d > 2 may have physically reachable borders of dimension d-1 which in turn may have borders of dimension d-2. The system still is critical at these borders. However, criticality terminates for good reason, and the points on the borders normally belong to another universality class than the universality class realized within the critical manifold. All the points on the border of a critical manifold are multicritical points. Instead of terminating somewhere critical manifolds also may branch or intersect. The points on the intersections or branch lines also are multicritical points.

At least two parameters must be adjusted to reach a multicritical point. A 2-dimensional critical manifold may have two 1-dimensional borders intersecting at a point. Two parameters must be adjusted to reach such a border, three parameters must be adjusted to reach the intersection of the two borders. A system of this type represents up to four universality classes: one within the critical manifold, two on the borders and one on the intersection of the borders.

The gas-liquid critical point is not multicritical, because the phase transition at the vapour pressure curve P(T) is discontinuous and the critical manifold thus consists of a single point.

Examples

Tricritical Point and Multicritical Points of Higher Order

To reach a tricritical point the parameters must be tuned in such a way that the renormalized counterpart of the \phi^4-term of the Hamiltonian vanishes. A well-known experimental realization is found in the mixture of Helium-3 and Helium-4.

Lifshitz Point

To reach a Lifshitz point the parameters must be tuned in such a way that the renormalized counterpart of the \left(\nabla\phi\right)^2-term of the Hamiltonian vanishes. Consequently, at the Lifshitz point phases of uniform and modulated order meet the disordered phase. An experimental example is the magnet MnP. A Lifshitz point is realized in a prototypical way in the ANNNI model.

Lifshitz Tricritical Point

This multicritical point is simultaneously tricritical and Lifshitz. Three parameters must be adjusted to reach a Lifshitz tricritical point. Such a point has been discussed to occur in non-stoichiometric ferroelectrics.

Renormalization Group

The renormalization group provides a detailed and quantitative explanation of critical phenomena.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.