World Library  
Flag as Inappropriate
Email this Article

Arthur Besse

Article Id: WHEBN0019342549
Reproduction Date:

Title: Arthur Besse  
Author: World Heritage Encyclopedia
Language: English
Subject: Zoll surface, Differential geometry
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Arthur Besse

Arthur Besse is a pseudonym chosen by a group of French differential geometers, led by Marcel Berger, following the model of Nicolas Bourbaki. A number of monographs have appeared under the name.

Bibliography

  • Actes de la Table Ronde de Géométrie Différentielle. [Proceedings of the Roundtable on Differential Geometry] En l'honneur de Marcel Berger. [In honor of Marcel Berger] Held in Luminy, July 12–18, 1992. Edited by Arthur L. Besse. Séminaires et Congrès [Seminars and Congresses], 1. Société Mathématique de France, Paris; distributed by American Mathematical Society, Providence, RI, 1996.
  • Besse, Arthur L.: Some trends in Riemannian geometry. Duration and change, 71–105, Springer, Berlin, 1994.
  • Besse, A. Многообразия Эйнштейна. Том I,II. (Russian) [Einstein manifolds. Vol. I, II] Translated from the English and with a preface by D. V. Alekseevskiĭ. "Mir", Moscow, 1990. Vol. I: 320 pp.; Vol. II: pp. 321–704.
  • Besse, Arthur L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 10. Springer-Verlag, Berlin, 1987.
  • Четырехмерная риманова геометрия. (Russian) [Riemannian geometry in dimension 4] Семинар Артура Бессе 1978/79. [The Arthur Besse seminar 1978/79] Translated from the French by G. B. Shabat. Translation edited by A. N. Tyurin. "Mir", Moscow, 1985.
  • Géométrie riemannienne en dimension 4. (French) [Riemannian geometry in dimension 4] Papers from the Arthur Besse seminar held at the Université de Paris VII, Paris, 1978/1979. Edited by Lionel Bérard-Bergery, Marcel Berger and Christian Houzel. Textes Mathématiques [Mathematical Texts], 3. CEDIC, Paris, 1981.
  • Besse, Arthur L. Многообразия с замкнутыми геодезическими. (Russian) [Manifolds all of whose geodesics are closed] Translated from the English by Yu. S. Osipov, I. D. Novikov and Yu. P. Solovʹev. Edited and with a preface by Vladimir Mikhaĭlovich Alekseev. "Mir", Moscow, 1981.
  • Besse, Arthur L. Manifolds all of whose geodesics are closed. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 93. Springer-Verlag, Berlin-New York, 1978.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.