Blood Fluke

Schistosoma mansoni egg
Scientific classification
Kingdom: Animalia
Phylum: Platyhelminthes
Class: Trematoda
Subclass: Digenea
Order: Strigeidida
Family: Schistosomatidae
Genus: Schistosoma
Weinland, 1858

Schistosoma bomfordi
Schistosoma bovis
Schistosoma curassoni
Schistosoma datta
Schistosoma edwardiense
Schistosoma guineensis
Schistosoma haematobium
Schistosoma harinasutai
Schistosoma hippotami
Schistosoma incognitum
Schistosoma indicum
Schistosoma intercalatum
Schistosoma japonicum
Schistosoma kisumuensis
Schistosoma leiperi
Schistosoma malayensis
Schistosoma mansoni
Schistosoma margrebowiei
Schistosoma mattheei
Schistosoma mekongi
Schistosoma ovuncatum
Schistosoma nasale
Schistosoma rodhaini
Schistosoma sinensium
Schistosoma spindale
Schistosoma turkestanicum

A genus of trematodes, Schistosoma, commonly known as blood-flukes and bilharzia, includes flatworms which are responsible for a highly significant parasitic infection of humans by causing the disease schistosomiasis, and is considered by the World Health Organization as the second most socioeconomically devastating parasitic disease, next only to malaria, with hundreds of millions infected worldwide.[1][2]

Adult worms parasitize mesenteric blood vessels. They are unique among trematodes or any other flatworms in that they are dioecious with distinct sexual dimorphism between male and female. Eggs are passed through urine or feces to fresh water, where larva must pass through an intermediate snail host, before a different larval stage of the parasite emerges that can infect a new mammalian host by directly penetrating the skin.


The eggs of these parasites were first seen by Theodor Maximilian Bilharz, a German pathologist working in Egypt in 1851 who found the eggs of Schistosoma haematobium during the course of a post mortem. He wrote two letters to his former teacher von Siebold in May and August 1851 describing his findings. Von Siebold wrote a paper (published in 1852) summarizing Bilharz's findings. Bilharz wrote a paper in 1856 describing the worms more fully and he named them Distoma haematobium. Their unusual morphology meant that they could not be comfortably included in Distoma. So in 1856 Meckel von Helmsback created the genus Bilharzia for them. In 1858 Weinland proposed the name Schistosoma (Greek: 'split body') after the male worms' morphology. Despite Bilharzia having precedence the genus name Schistosoma was officially adopted by the International Commission on Zoological Nomenclature. The term Bilharzia to describe infection with these parasites is still in use in medical circles.

Bilharz also described Schistosoma mansoni but this species was redescribed by Louis Westenra Sambon in 1907 at the London School of Tropical Medicine who named it after his teacher Patrick Manson.

In 1898, all the then known species were placed in a subfamily by Stiles and Hassel. This was then elevated to family status by Looss in 1899. Poche in 1907 corrected a grammatical error in the family name. The life cycle was determined by da Silva in 1908.

In 2009, the genomes of Schistosoma mansoni and Schistosoma japonicum were decoded [3][4] opening the way for new targeted treatments. In particular, the study discovered that the genome of S. mansoni contained 11,809 genes including many which produce enzymes for breaking down proteins which enable the parasite to bore through tissue. Also, S. mansoni does not have an enzyme to make certain fats so that it must rely on its host to produce these.[5]


The origins of this genus remain unclear. For many years it was believed that this genus had an African origin but DNA sequencing suggests that the species (S. edwardiense and S. hippopotami) that infect the hippo (Hippopotamus amphibius) could be basal. Since hippos were present in both Africa and Asia during the Cenozoic era the genus might have originated as parasites of hippos.[6] The original hosts for the South East Asian species were probably rodents.

Based on the

The sister group to Schistosoma is a genus of elephant-infecting schistosomes — Bivitellobilharzia. The cattle, sheep, goat and cashmere goat parasite Orientobilharzia turkestanicum appears to be related to the African schistosomes.[8][9] This latter species has since been transferred to the genus Schistosoma.[10]

Within the haematobium group S. bovis and S. curassoni appear to be closely related as do S. leiperi and S. mattheei.

S. mansoni appears to have evolved in East Africa 0.43–0.30 million years ago.

S. incognitum and S. nasale are more closely related to the African species rather than the japonicum group.

S. sinensium appears to have radiated during the Pliocene.

S. mekongi appears to have invaded South East Asia in the mid-Pleistocene.

Estimated speciation dates for the japonicum group: ~3.8 million years ago for S. japonicum/South East Asian schistosoma and ~2.5 million years ago for S. malayensis/S. mekongi.

Schistosoma turkestanicum is found infecting red deer in Hungary. These strains appear to have diverged from those found in China and Iran.[11] The date of divergence appears to be 270,000 years before present.


The genus Schistosoma as currently defined is paraphyletic so revisions are likely. Currently over twenty species are recognised within this genus.

The genus has been divided into four groups — indicum, japonicum, haematobium and mansoni. The affinities of the remaining species are still being clarified.

Thirteen species are found in Africa. Twelve of these are divided into two groups — those with a lateral spine on the egg (mansoni group) and those with a terminal spine (haematobium group).

The four mansoni group species are: S. edwardiense, S. hippotami, S. mansoni and S. rodhaini.

The nine haematobium group species are: S. bovis, S. curassoni, S. intercalatum, S. guineensis, S. haematobium, S. kisumuensis, S. leiperi, S. margrebowiei and S. matthei.

S. leiperi and S. matthei appear to be related.[12] S. margrebowiei is basal in this group.[13] S. guineensis is the sister species to the S. bovis and S. curassoni grouping. S. intercalatum may actually be a species complex of at least two species.[14][15]

S. spindale is widely distributed in Asia but is also found in Africa.

The other species occur in Asia and India.

The indicum group has three species: S. indicum, S. nasale and S. spindale. This group appears to have evolved during the Pleistocene. All use pulmonate snails as hosts.

S. indicum is found in India and Thailand.

This group appears to be the sister clade to the African species.[16]

The japonicum group has three species: S. japonicum, S. malayensis and S. mekongi.

S. sinensium is a sister clade to the S. japonicum group and is found in China.

S. ovuncatum forms a clade with S. sinensium and is found in northern Thailand. The definitive host is the rat (Rattus rattus) and the intermediate host is the snail Tricula bollingi. This species is known to use snails of the family Pomatiopsidae as hosts.

S. incognitum appears to be basal in this genus. It may be more closely related to the African/Indian species than to the South East Asian group. This species uses pulmonate snails as hosts.

New species

Four additional species have been transferred to this genus.[10] These were previously classified as species in the genus Orientobilharzia. Orientobilharzia differs from Schistosoma morphologically only on the basis of the number of testes. A review of the morphological and molecular data has shown that the differences between these genera are too small to justify their separation. The four species that have been transferred to this genus are

  • Schistosoma bomfordi
  • Schistosoma datta
  • Schistosoma harinasutai
  • Schistosoma turkestanicum

Examination of the mitochondria suggests that Schistosoma incognitum may be a species complex.[17]


A cladogram based on 18S ribosomal RNA, 28S ribosomal RNA, and partial cytochrome-c oxidase I (COI) genes shows phylogenic relations of species in the genus Schistosoma:[18]

Schistosoma curassoni

Schistosoma intercalatum

Schistosoma bovis

Schistosoma leiperi

Schistosoma mattheei

Schistosoma haematobium

Schistosoma margrebowiei

Schistosoma spindale

Schistosoma indicum

Schistosoma nasale

Schistosoma mansoni

Schistosoma rodhaini

Schistosoma incognitum

Schistosoma turkestanicum

Schistosoma edwardiense

Schistosoma sp. from Ceratophallus natalensis

Schistosoma mekongi

Schistosoma malayensis

Schistosoma japonicum

Schistosoma sinensium

Schistosoma ovuncatum

Comparison of eggs


Main articles: schistosomiasis and schistosomicide

Schistosoma causes the parasitic disease schistosomiasis. An anti-schistosome drug is a schistosomicide.

Species infecting humans

Parasitism of humans by Schistosoma appears to have evolved at least three occasions in both Asia and Africa.

  • S. guineensis, a recently described species, is found in West Africa. Known snail intermediate hosts include Bulinus forskalii.
  • S. haematobium, commonly referred to as the bladder fluke, originally found in Africa, the Near East, and the Mediterranean basin, was introduced into India during World War II. Freshwater snails of the Bulinus genus are an important intermediate host for this parasite. Among final hosts humans are most important. Other final hosts are rarely baboons and monkeys.[19]
  • S. intercalatum. The usual final hosts are humans. Other animals can be infected experimentally.[19]
  • S. japonicum whose common name is simply blood fluke is found widely spread in Eastern Asia and the southwestern Pacific region. In Taiwan this species only affects animals, not humans. Freshwater snails of the Oncomelania genus are an important intermediate host for S. japonicum. Final hosts are humans and other mammals including cats, dogs, goats, horses, pigs, rats and water buffalo.[19]
  • S. malayensis This species appears to be a rare infection in humans and is considered to be a zoonosis. The natural vertebrate host is von Muller's rat (Rattus muelleri). The snail host(s) are Robertsiella species (R. gismanni, R. kaporensis and R. silvicola (see Attwood et al. 2005 Journal of Molluscan Studies Volume 71, Issue 4 pp. 379–391).
  • S. mekongi is related to S. japonicum and affects both the superior and inferior mesenteric veins. S. mekongi differs in that it has smaller eggs, a different intermediate host (Neotricula aperta) and longer prepatent period in the mammalian host. Final hosts are humans and dogs.[19] The snail Tricula aperta can also be experimentally infected with this species.
Human Schistosomes
Scientific Name First Intermediate Host Endemic Area
Schistosoma guineensis Bulinus forskalii West Africa
Schistosoma intercalatum Bulinus spp Africa
Schistosoma haematobium Bulinus spp. Africa, Middle East
Schistosoma japonicum Oncomelania spp. China, East Asia, Philippines
Schistosoma malayensis Not known South East Asia
Schistosoma mansoni Biomphalaria spp. Africa, South America, Caribbean, Middle East
Schistosoma mekongi Neotricula aperta South East Asia

Species infecting animals other than humans

Schistosoma indicum, Schistosoma nasale, Schistosoma spindale,Schistosoma leiperi are all parasites of ruminants.

Schistosoma edwardiense and Schistosoma hippopotami are parasites of the hippo.

Schistosoma ovuncatum and Schistosoma sinensium are parasites of rodents.


Adult schistosomes share all the fundamental features of the digenea. They have a basic bilateral symmetry, oral and ventral suckers, a body covering of a syncytial tegument, a blind-ending digestive system consisting of mouth, oesophagus and bifurcated caeca; the area between the tegument and alimentary canal filled with a loose network of mesoderm cells, and an excretory or osmoregulatory system based on flame cells. Adult worms tend to be 10–20 mm (0.4–0.8 in) long and use globins from their hosts' hemoglobin for their own circulatory system.


Unlike other trematodes, the schistosomes are dioecious — i.e., the sexes are separate. The two sexes display a strong degree of sexual dimorphism, and the male is considerably larger than the female. The male surrounds the female and encloses her within his gynacophoric canal for the entire adult lives of the worms, where they reproduce sexually.


The genomes of Schistosoma haematobium, S. japonicum and S. mansoni have been reported.[3][4][20][21]


External links

  • British Department for International Development Control of Schistosomiasis
  • The World Health Organisation page on Schistosomiasis
  • University of Cambridge Schistosome Laboratory
  • Schistostoma parasites overview, biology, life cycle image at MetaPathogen
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.