World Library  
Flag as Inappropriate
Email this Article

Buffer solution

Article Id: WHEBN0000046999
Reproduction Date:

Title: Buffer solution  
Author: World Heritage Encyclopedia
Language: English
Subject: PH, Borax, Solubility equilibrium, Acidity function, Conjugate acid
Publisher: World Heritage Encyclopedia

Buffer solution

For an individual weak acid or weak base component, see Buffering agent. For uses not related to acid-base chemistry, see Buffer (disambiguation).

A buffer solution (more precisely, pH buffer or hydrogen ion buffer) is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small or moderate amount of strong acid or base is added to it and thus it is used to prevent changes in the pH of a solution. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications. Many life forms thrive only in a relatively small pH range so they utilize a buffer solution to maintain a constant pH. One example of a buffer solution found in nature is blood.

Principles of buffering

Simulated titration of an acidified solution of a weak acid (pKa = 4.7) with alkali.
Addition of hydroxide to a mixture of a weak acid and its conjugate base

Buffer solutions achieve their resistance to pH change because of the presence of an equilibrium between the acid HA and its conjugate base A-.

HA is in equilibrium with H+ + A-

When some strong acid is added to an equilibrium mixture of the weak acid and its conjugate base, the equilibrium is shifted to the left, in accordance with Le Chatelier's principle. Because of this, the hydrogen ion concentration increases by less than the amount expected for the quantity of strong acid added. Similarly, if strong alkali is added to the mixture the hydrogen ion concentration decreases by less than the amount expected for the quantity of alkali added. The effect is illustrated by the simulated titration of a weak acid with pKa = 4.7. The relative concentration of undissociated acid is shown in blue and of its conjugate base in red. The pH changes relatively slowly in the buffer region, pH = pKa ± 1, centered at pH = 4.7 where [HA] = [A-]. The hydrogen ion concentration decreases by less than the amount expected because most of the added hydroxide ion is consumed in the reaction

OH- + HA → H2O + A-

and only a little is consumed in the neutralization reaction which results in an increase in pH.

OH- + H+ → H2O

Once the acid is more than 95% deprotonated the pH rises rapidly because most of the added alkali is consumed in the neutralization reaction.


Buffer solutions are necessary to keep the correct pH for denature. In many cases denaturation can permanently disable their catalytic activity.[1] A buffer of carbonic acid (H2CO3) and bicarbonate (HCO3) is present in blood plasma, to maintain a pH between 7.35 and 7.45.

Industrially, buffer solutions are used in fermentation processes and in setting the correct conditions for dyes used in colouring fabrics. They are also used in chemical analysis[2] and calibration of pH meters.

The majority of biological samples that are used in research are made in buffers, especially phosphate buffered saline (PBS) at pH 7.4.

Simple buffering agents

Buffering agent pKa useful pH range
Citric acid 3.13, 4.76, 6.40 2.1 - 7.4
Acetic acid 4.8 3.8 - 5.8
KH2PO4, 7.2 6.2 - 8.2
CHES 9.3 8.3–10.3
Borate 9.24 8.25 - 10.25

For buffers in acid regions, the pH may be adjusted to a desired value by adding a strong acid such as hydrochloric acid to the buffering agent. For alkaline buffers, a strong base such as sodium hydroxide may be added. Alternatively, a buffer mixture can be made from a mixure of an acid and its conjugate base. For example, an acetate buffer can be made from a mixture of acetic acid and sodium acetate. Similarly an alkaline buffer can be made from a mixture of the base and its conjugate acid.

"Universal" buffer mixtures

By combining substances with pKa values differing by only two or less and adjusting the pH, a wide range of buffers can be obtained. Citric acid is a useful component of a buffer mixture because it has three pKa values, separated by less than two. The buffer range can be extended by adding other buffering agents. The following two-component mixtures (McIlvaine's buffer solutions) have a buffer range of pH 3 to 8.[3]

0.2M Na2HPO4 /mL 0.1M Citric Acid /mL pH...
20.55 79.45 3.0
38.55 61.45 4.0
51.50 48.50 5.0
63.15 36.85 6.0
82.35 17.65 7.0
97.25 2.75 8.0

A mixture containing citric acid, monopotassium phosphate, boric acid, and diethyl barbituric acid can be made to cover the pH range 2.6 to 12.[4]

Other universal buffers are Carmody buffer[5] and Britton-Robinson buffer, developed in 1931.

Common buffer compounds used in biology

Common Name pKa
at 25 °C
Buffer Range Temp Effect
dpH/dT in (1/K)[6]
Full Compound Name
TAPS 8.43 7.7–9.1 −0.018 243.3 3-{\left(K_a+[H^+]\right)^2}+[OH^-] \right)

where CA is the analytical concentration of the acid.[2] pH is defined as -log10[H+].

There are three regions of high buffer capacity.

  • At very low p[H+] the first term predominates and β increases in proportion to the hydrogen ion concentration; buffer capacity rises exponentially with pH. This is independent of the presence or absence of buffering agents.
  • In the region p[H+] = pKa ± 2 the second term becomes important. Buffer capacity is proportional to the concentration of the buffering agent, CA, so dilute solutions have little buffer capacity.
  • At very high p[H+] the third term predominates and β increases in proportion to the hydroxide ion concentration; buffer capacity rises exponentially with pH. This is due to the self-ionization of water and is independent of the presence or absence of buffering agents.

The buffer capacity of a buffering agent is at a local maximum when p[H+] = pKa. It falls to 33% of the maximum value at p[H+] = pKa ± 1 and to 10% at p[H+] = pKa ± 1.5. For this reason the useful range is approximately pKa ± 1.

Calculating buffer pH

Monoprotic acids

First write down the equilibrium expression.

HA is in equilibrium with A- + H+

This shows that when the acid dissociates equal amounts of hydrogen ion and anion are produced. The equilibrium concentrations of these three components can be calculated in an ICE table.

ICE table for a monoprotic acid
[HA] [A-] [H+]
I C0 0 y
C -x x x
E C0-x x x+y

The first row, labelled I, lists the initial conditions: the concentration of acid is C0, initially undissociated, so the concentrations of A- and H+ would be zero; y is the initial concentration of added strong acid, such as hydrochloric acid. If strong alkali, such as sodium hydroxide, is added y will have a negative sign because alkali removes hydrogen ions from the solution. The second row, labelled C for change, specifies the changes that occur when the acid dissociates. The acid concentration decreases by an amount -x and the concentrations of A- and H+ both increase by an amount +x. This follows from the equilibrium expression. The third row, labelled E for equilibrium concentrations, adds together the first two rows and shows the concentrations at equilibrium.

To find x, use the formula for the equilibrium constant in terms of concentrations:

K_a = \frac

Substitute the concentrations with the values found in the last row of the ICE table:

K_a = \frac{x(x+y)}{C_0 - x}

Simplify to:

x^2 + (K_a +y) x - K_a C_0 = 0

With specific values for C0, Ka and y this equation can be solved for x. Assuming that pH = -log10[H+] the pH can be calculated as pH = -log10(x+y).

Polyprotic acids

This image plots the relative percentages of the protonation species of citric acid as a function of p H. Citric acid has three ionizable hydrogen atoms and thus three p K A values. Below the lowest p K A, the triply protonated species prevails; between the lowest and middle p K A, the doubly protonated form prevails; between the middle and highest p K A, the singly protonated form prevails; and above the highest p K A, the unprotonated form of citric acid is predominant.
% species formation calculated for a 10 millimolar solution of citric acid.

Polyprotic acids are acids that can lose more than one proton. The constant for dissociation of the first proton may be denoted as Ka1 and the constants for dissociation of successive protons as Ka2, etc. Citric acid, H3A, is an example of a polyprotic acid as it can lose three protons.

equilibrium pKa value
H3A is in equilibrium with H2A + H+ pKa1 = 3.13
H2A is in equilibrium with HA2− + H+ pKa2 = 4.76
HA2− is in equilibrium with A3− + H+ pKa3 = 6.40

When the difference between successive pK values is less than about three there is overlap between the pH range of existence of the species in equilibrium. The smaller the difference, the more the overlap. In the case of citric acid, the overlap is extensive and solutions of citric acid are buffered over the whole range of pH 2.5 to 7.5.

Calculation of the pH with a polyprotic acid requires a speciation calculation to be performed. In the case of citric acid, this entails the solution of the two equations of mass balance

C_A = [A^{3-}]+\beta_1 [A^{3-}][H^+] +\beta_2 [A^{3-}][H^+]^2 +\beta_3 [A^{3-}][H^+]^3
C_H = [H^+]+ \beta_1 [A^{3-}][H^+]+ 2\beta_2 [A^{3-}][H^+]^2+ 3\beta_3 [A^{3-}][H^+]^3 -K_w[H]^{-1}

CA is the analytical concentration of the acid, CH is the analytical concentration of added hydrogen ions, βq are the cumulative association constants

\log \beta_1=pK_{a3}, \ \log \beta_2=pK_{a2}+ pK_{a3},\ \log \beta_3=pK_{a1}+ pK_{a2}+ pK_{a3}

Kw is the constant for Self-ionization of water. There are two non-linear simultaneous equations in two unknown quantities [A3-] and [H+]. Many computer programs are available to do this calculation. The speciation diagram for citric acid was produced with the program HySS.[8]

See also


  1. ^ Scorpio, R. (2000). Fundamentals of Acids, Bases, Buffers & Their Application to Biochemical Systems.  
  2. ^ a b Hulanicki, A. (1987). Reactions of acids and bases in analytical chemistry. Horwood.   (translation editor: Mary R. Masson)
  3. ^ McIlvaine, T.C. (1921). "A buffer solution for colorimetric comparaison". J. Biol. Chem. 49 (1): 183–186. 
  4. ^ Medham, J.; Denny, R.C.; Barnes, J.D.; Thomas, M (2000). Vogel's textbook of quantitative chemical analysis (5th. Ed. ed.). Harlow: Pearson Education.   Appendix 5
  5. ^ Carmody, Walter R. (1961). "Easily prepared wide range buffer series". J. Chem. Educ. 38 (11): 559–560.  
  6. ^ "Buffer Reference Center". Sigma-Aldrich. Retrieved 2009-04-17. 
  7. ^ "Biological buffers". REACH Devices. 
  8. ^ Alderighi, L.; Gans, P.; Ienco, A.; Sabatini, A.; Vacca (1999). "Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species". Coordination Chemistry Reviews 184 (1): 311–318.  

External links

  • Online pH buffer calculator
  • phosphate buffer
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.