World Library  
Flag as Inappropriate
Email this Article

Centered hexagonal number

Article Id: WHEBN0000497485
Reproduction Date:

Title: Centered hexagonal number  
Author: World Heritage Encyclopedia
Language: English
Subject: Hexagonal number, Centered polygonal number, Pronic number, Pentagonal number, Figurate numbers
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Centered hexagonal number

A centered hexagonal number, or hex number, is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice.

1 7 19 37
+1 +6 +12 +18
* **
***
**
***
****
*****
****
***
****
*****
******
*******
******
*****
****

The nth centered hexagonal number is given by the formula

n^3 - (n-1)^3 = 3n(n-1)+1.\,

Expressing the formula as

1+6\left({1\over 2}n(n-1)\right)

shows that the centered hexagonal number for n is 1 more than 6 times the (n − 1)th triangular number.

The first few centered hexagonal numbers are (sequence A003215 in OEIS):

1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919.

In base 10 one can notice that the hexagonal numbers' rightmost (least significant) digits follow the pattern 1–7–9–7–1.

Centered hexagonal numbers have practical applications in materials logistics management, for example, in packing round items into larger round containers, such as Vienna sausages into round cans, or combining individual wire strands into a cable.

The sum of the first n centered hexagonal numbers happens to be n3. That is, centered hexagonal pyramidal numbers and cubes are the same numbers, but they represent different shapes. Viewed from the opposite perspective, centered hexagonal numbers are differences of two consecutive cubes, so that the centered hexagonal numbers are the gnomon of the cubes. In particular, prime centered hexagonal numbers are cuban primes.

The difference between (2n)2 and the nth centered hexagonal number is a number of the form 3n2 + 3n − 1, while the difference between (2n − 1)2 and the nth centered hexagonal number is a pronic number.

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.