World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0023278617
Reproduction Date:

Title: Ciliate  
Author: World Heritage Encyclopedia
Language: English
Subject: Protozoa, Alveolate, Protist, Macronucleus, Cytostome
Collection: Ciliates
Publisher: World Heritage Encyclopedia


Temporal range: EdiacaranRecent
"Ciliata" from Ernst Haeckel's Kunstformen der Natur, 1904
Scientific classification
Domain: Eukarya
Kingdom: Chromalveolata
Superphylum: Alveolata
Phylum: Ciliophora
Doflein, 1901 emend.

See text for subclasses.

  • Ciliata Perty, 1852

The ciliates are a group of cilia, which are identical in structure to eukaryotic flagella, but typically shorter and present in much larger numbers with a different undulating pattern than flagella. Cilia occur in all members of the group (although the peculiar Suctoria only have them for part of the life-cycle) and are variously used in swimming, crawling, attachment, feeding, and sensation.

Ciliates are one of the most important groups of protists, common almost everywhere there is water — in lakes, ponds, oceans, rivers, and soils. Ciliates have many ectosymbiotic and endosymbiotic members, as well as some obligate and opportunistic parasites. Ciliates are large single cells, a few reaching 2 mm in length, and are some of the most complex protozoans in structure.

The term "Ciliophora" is used in classification as a order.[1] Ciliophora can be classified under Protista[2] or Protozoa.[3] The term "Ciliata" is also used,[4] as a Class (biology).[5] (However, this latter term can also refer to a genus of fish.) Protista classification is rapidly evolving, and it is not rare to encounter these terms used to describe other hierarchical levels.


  • Cell structure 1
    • Nuclei 1.1
    • Cytoplasm 1.2
    • Specialized structures in ciliates 1.3
  • Feeding 2
  • Reproduction and sexual phenomena 3
    • Conjugation 3.1
  • DNA Rearrangements (gene scrambling) 4
  • Fossil record 5
  • Classification 6
    • Subphylum Postciliodesmatophora 6.1
    • Subphylum Intramacronucleata 6.2
    • Other 6.3
  • References 7

Cell structure

Cell structure of a ciliophoran: 1-contractile vacuole, 2-digestive vacuole, 3-macronucleus, 4-micronucleus, 5-cytoproct, 6-cytopharynx, 7-cytostome, 8-cilium.


Unlike most other eukaryotes, ciliates have two different sorts of nuclei: a small, diploid micronucleus (reproduction), and a large, polyploid macronucleus (general cell regulation). The latter is generated from the micronucleus by amplification of the genome and heavy editing. The micronucleus serves as the germ line nucleus, but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth.

Division of the macronucleus occurs by amitosis and the segregation of the chromosomes occurs by a process whose mechanism is unknown. This process is by no means perfect, and after about 200 generations the cell shows signs of aging. Periodically the macronuclei must be regenerated from the micronuclei. In most, this occurs during conjugation. Here two cells line up, the micronuclei undergo meiosis, some of the haploid daughters are exchanged and then fuse to form new micronuclei and macronuclei.


Food vacuoles are formed through phagocytosis and typically follow a particular path through the cell as their contents are digested and broken down by lysosomes so the substances the vacuole contains are then small enough to diffuse through the membrane of the food vacuole into the cell. Anything left in the food vacuole by the time it reaches the cytoproct (anus) is discharged by exocytosis. Most ciliates also have one or more prominent contractile vacuoles, which collect water and expel it from the cell to maintain osmotic pressure, or in some function to maintain ionic balance. In some genera, such as Paramecium, these have a distinctive star shape, with each point being a collecting tube.

Specialized structures in ciliates

In some forms there are also body polykinetids, for instance, among the microtubules involved in coordinating the cilia.

The infraciliature is one of the main component of the cell cortex. Another are the alveoli, small vesicles under the cell membrane that are packed against it to form a pellicle maintaining the cell's shape, which varies from flexible and contractile to rigid. Numerous mitochondria and extrusomes are also generally present. The presence of alveoli, the structure of the cilia, the form of mitosis and various other details indicate a close relationship between the ciliates, Apicomplexa, and dinoflagellates. These superficially dissimilar groups make up the alveolates.


Most ciliates are bacteria and algae, and detritus swept into the oral groove (mouth) by modified oral cilia. This usually includes a series of membranelles to the left of the mouth and a paroral membrane to its right, both of which arise from polykinetids, groups of many cilia together with associated structures. The food is moved by the cilia through the mouth pore into the gullet, which forms food vacuoles.

This varies considerably, however. Some ciliates are mouthless and feed by absorption (osmotrophy), while others are predatory and feed on other protozoa and in particular on other ciliates. Some ciliates parasitize animals, although only one species, Balantidium coli, is known to cause disease in humans.[6]

Reproduction and sexual phenomena

Ciliate undergoing the last processes of binary fission, a form of asexual reproduction

Ciliates reproduce asexually, by various kinds of fission.[6] During fission, the micronucleus undergoes mitosis and the macronucleus elongates and splits in half (except among the Karyorelictean ciliates, whose macronuclei do not divide). The cell then divides in two, and each new cell obtains a copy of the micronucleus and the macronucleus.

Typically, the cell is divided transversally, with the cyst).[6]

Fission may occur spontaneously, as part of the vegetative cell cycle. Alternatively, it may be proceed as a result of self-fertilization (autogamy),[7] or it may follow conjugation, a sexual phenomenon in which ciliates of compatible mating types exchange genetic material.



During conjugation, two cells form a bridge between their cytoplasms, the micronuclei undergo meiosis, the macronuclei disappear, and the haploid micronuclei are exchanged over the bridge. In some ciliates (such as Vorticella), conjugating cells become permanently fused, and one conjugant is absorbed by the other.[8] In most ciliate groups, however, the cells separate after conjugation, and both form new macronuclei from their micronuclei.[4] Conjugation and autogamy are always followed by fission.[6]

More details

In general the process is as follows but the details may vary between species:

  • Compatible mating strains meet and partly fuse.
  • The micronuclei undergo meiosis producing four micronuclei per cell.
  • Three of these micronuclei disintegrate. The fourth undergoes mitosis.
  • The two cells exchange a micronucleus.
  • The cells then separate.
  • The micronuclei in each cell fuse.
  • This is followed by mitosis which occurs three times giving rise to eight micronuclei.
  • Four of the new micronuclei transform into macronuclei
  • Finally binary fission occurs twice yielding four daughter cells.

DNA Rearrangements (gene scrambling)

Development of the Oxytricha macronuclear genome from micronuclear genome

Ciliates contain two types of nuclei: somatic "macronucleus" and the germline "micronucleus". Only the DNA in the micronucleus is passed on during sexual reproduction (conjugation). On the other hand, only the DNA in the macronucleus is actively expressed and results in the phenotype of the organism. Macronuclear DNA is derived from micronuclear DNA by amazingly extensive DNA rearrangement and amplification.

The macronucleus begins as a copy of the micronucleus. The micronuclear chromosomes are fragmented into many smaller pieces and amplified to give many copies. The resulting macronuclear chromosomes often contain only a single gene. In Tetrahymena, the micronucleus has 10 chromosomes (5 per haploid genome), while the macronucleus has over 20,000 chromosomes.[9]

In addition, the micronuclear genes are interrupted by numerous "Internal Eliminated Sequences" (IESs). During development of the macronucleus, IESs are deleted and the remaining gene segments, Macronuclear Destined Sequences (MDSs), are spliced together to give the operational gene. Tetrahymena has about 6000 IESs and about 15% of micronuclear DNA is eliminated during this process. The process is guided by small RNAs and epigenetic chromatin marks.[9]

In spirotrich ciliates (such as Oxytricha), the process is even more complex due to "gene scrambling": the MDSs in the micronucleus are often in different order and orientation from that in the macronuclear gene, and so in addition to deletion, DNA inversion and translocation are required for "unscrambling". This process is guided by long RNAs derived from the parental macronucleus. More than 95% of micronuclear DNA is eliminated during spirotrich macronuclear development.[9]

Fossil record

Until recently, the oldest ciliate fossils known were tintinnids from the Ordovician Period. In 2007, Li et al. published a description of fossil ciliates from the Doushantuo Formation, about 580 million years ago, in the Ediacaran Period. These included two types of tintinnids and a possible ancestral suctorian.[10]


Subphylum Postciliodesmatophora

Subphylum Intramacronucleata


Some old classifications included Opalinidae in the ciliates.


  1. ^ "Ciliophora — Definition from Merriam-Webster's Medical Dictionary". Merriam-Webster. Retrieved 2009-01-16. 
  2. ^ Yi Z, Song W, Clamp JC, Chen Z, Gao S, Zhang Q (December 2008). "Reconsideration of systematic relationships within the order Euplotida (Protista, Ciliophora) using new sequences of the gene coding for small-subunit rRNA and testing the use of combined data sets to construct phylogenies of the Diophrys-complex". Mol. Phylogenet. Evol. 50 (3): 599–607.  
  3. ^ Miao M, Song W, Chen Z, et al. (2007). "A unique euplotid ciliate, Gastrocirrhus (Protozoa, Ciliophora): assessment of its phylogenetic position inferred from the small subunit rRNA gene sequence". J. Eukaryot. Microbiol. 54 (4): 371–8.  
  4. ^ a b "Introduction to the Ciliata". Retrieved 2009-01-16. 
  5. ^ "Ciliata — Definition from Merriam-Webster's Medical Dictionary". Merriam-Webster. Retrieved 2009-01-16. 
  6. ^ a b c d Lynn, Denis (2008). The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature (3 ed.). Springer. p. 187.  
  7. ^ Berger JD (October 1986). "Autogamy in Paramecium. Cell cycle stage-specific commitment to meiosis". Exp. Cell Res. 166 (2): 475–85.  
  8. ^ Finley, Harold E. "The conjugation of Vorticella microstoma." Transactions of the American Microscopical Society (1943): 97-121.
  9. ^ a b c Mochizuki, Kazufumi (2010). "DNA rearrangements directed by non-coding RNAs in ciliates". Wiley Interdisciplinary Reviews: RNA 1 (3): 376–387.  
  10. ^ Li, C.-W.; et al. (2007). "Ciliated protozoans from the Precambrian Doushantuo Formation, Wengan, South China". Geological Society, London, Special Publications 286: 151–156.  
  • "Ciliophora". NCBI Taxonomy Browser. 5878. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.