World Library  
Flag as Inappropriate
Email this Article

DHCPv6

Article Id: WHEBN0004288121
Reproduction Date:

Title: DHCPv6  
Author: World Heritage Encyclopedia
Language: English
Subject: IPv6, IPv6 address, Comparison of DHCP server software, Prefix delegation, IPv6-to-IPv6 Network Prefix Translation
Collection: Application Layer Protocols, Ipv6
Publisher: World Heritage Encyclopedia
Publication
Date:
 

DHCPv6

The Dynamic Host Configuration Protocol version 6 (DHCPv6) is a network protocol for configuring Internet Protocol version 6 (IPv6) hosts with IP addresses, IP prefixes and other configuration data required to operate in an IPv6 network. It is the IPv6 equivalent of the Dynamic Host Configuration Protocol for IPv4.

IPv6 hosts may automatically generate IP addresses internally using stateless address autoconfiguration, or they may be assigned configuration data with DHCPv6.

IPv6 hosts that use stateless autoconfiguration may require information other than an IP address or route. DHCPv6 can be used to acquire this information, even though it is not being used to configure IP addresses. DHCPv6 is not necessary for configuring hosts with the addresses of Domain Name System (DNS) servers, because they can be configured using Neighbor Discovery Protocol, which is also the mechanism for stateless autoconfiguration.[1]

Many IPv6 routers, such as routers for residential networks, must be configured automatically with no operator intervention. Such routers require not only an IPv6 address for use in communicating with upstream routers, but also an IPv6 prefix for use in configuring devices on the downstream side of the router. DHCPv6 prefix delegation provides a mechanism for configuring such routers.

Contents

  • Operation 1
    • Port numbers 1.1
    • DHCP Unique Identifier 1.2
    • Example 1.3
  • IETF standards 2
  • See also 3
  • References 4
  • External links 5

Operation

Port numbers

DHCPv6 uses UDP port number 546 for clients and port number 547 for servers.

DHCP Unique Identifier

The DHCP Unique Identifier (DUID) is used by a client to get an IP address from a DHCPv6 server. It has a minimum length of 12 bytes (96 bits) and a maximum length of 20 bytes (160 bits). Its actual length depends on its type. The server compares the DUID with its database and delivers configuration data (address, lease times, DNS servers, etc.) to the client. The first 16 bits of a DUID contain the DUID type, of which there are three types. The meaning of the remaining 96 bits depend on the DUID type.

Example

In this example, the server's link-local address is fe80::0011:22ff:fe33:5566 and the client's link-local address is fe80::aabb:ccff:fedd:eeff.

  • DHCPv6 client sends a Solicit from [fe80::aabb:ccff:fedd:eeff]:546 for [ff02::1:2]:547.
  • DHCPv6 server replies with an Advertise from [fe80::0011:22ff:fe33:5566]:547 for [fe80::aabb:ccff:fedd:eeff]:546.
  • DHCPv6 client replies with a Request from [fe80::aabb:ccff:fedd:eeff]:546 for [ff02::1:2]:547. (All client messages are sent to the multicast address, per section 13 of RFC 3315.)
  • DHCPv6 server finishes with a Reply from [fe80::0011:22ff:fe33:5566]:547 for [fe80::aabb:ccff:fedd:eeff]:546.

IETF standards

  • RFC 3315, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"
  • RFC 3319, "Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation Protocol (SIP) Servers"
  • RFC 3633, "IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6"
  • RFC 3646, "DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"
  • RFC 3736, "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6"
  • RFC 5007, "DHCPv6 Leasequery"
  • RFC 6221, "Lightweight DHCPv6 Relay Agent" (LDRA)

See also

References

  1. ^ RFC 4339, IPv6 Host Configuration of DNS Server Information Approaches, J. Jeong (February 2006)

External links

  • IPv6 Intelligence: DHCPv6, comparison of DHCPv6 packages and implementations (Last updated: April, 2009)
  • IPv6 Ready: DHCPv6, list of IPv6 Phase II Certified DHCPv6 implementations (Last updated: December, 2012)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.