World Library  
Flag as Inappropriate
Email this Article

Elliptical distribution

Article Id: WHEBN0027014075
Reproduction Date:

Title: Elliptical distribution  
Author: World Heritage Encyclopedia
Language: English
Subject: Modern portfolio theory, Symmetric probability distribution, Normal distribution, Ellipse, Mutual fund separation theorem
Publisher: World Heritage Encyclopedia

Elliptical distribution

In probability and statistics, an elliptical distribution is any member of a broad family of probability distributions that generalize the multivariate normal distribution. Intuitively, in the simplified two and three dimensional case, the joint distribution forms an ellipse and an ellipsoid, respectively, in iso-density plots.


Elliptical distributions can be defined using characteristic functions. A multivariate distribution is said to be elliptical if its characteristic function of the form[1]

e^{it'\mu} \Psi(t' \Sigma t) \,

for a specified vector \mu, positive-definite matrix \Sigma, and characteristic function \Psi. The function \Psi is known as the characteristic generator of the elliptical distribution.[2]

Elliptical distributions can also be defined in terms of their density functions. When they exist, the density functions f have the structure:

f(x)= k \cdot g((x-\mu)'\Sigma^{-1}(x-\mu))

where k is the scale factor, x is an n-dimensional random vector with median vector \mu (which is also the mean vector if the latter exists), \Sigma is a positive definite matrix which is proportional to the covariance matrix if the latter exists, and g is a function mapping from the non-negative reals to the non-negative reals giving a finite area under the curve.[3]


In the 2-dimensional case where the density exists, each iso-density locus (the set of x1,x2 pairs all giving a particular value of f(x)) is an ellipse (hence the name elliptical distribution). More generally, for arbitrary n the iso-density loci are ellipsoids.

The multivariate normal distribution is the special case in which g(z)=e^{-z/2} for quadratic form z. While the multivariate normal is unbounded (each element of x can take on arbitrarily large positive or negative values with non-zero probability, because e^{-z/2}>0 for all non-negative z), in general elliptical distributions can be bounded or unbounded—such a distribution is bounded if g(z)=0 for all z greater than some value.

Note that there exist elliptical distributions that have infinite mean and variance, such as the multivariate [Student's t-distribution] or the multivariate Cauchy distribution .[4]

Because the index variable x enters the density function quadratically, all elliptical distributions are symmetric about \mu.


Elliptical distributions are important in portfolio theory because, if the returns on all assets available for portfolio formation are jointly elliptically distributed, then all portfolios can be characterized completely by their location and scale – that is, any two portfolios with identical location and scale of portfolio return have identical distributions of portfolio return (Chamberlain 1983; Owen and Rabinovitch 1983). For multi-normal distributions, location and scale correspond to mean and standard deviation.


  1. ^ Stamatis Cambanis, Steel Huang, and Gordon Simons (1981). "On the Theory of Elliptically Contoured Distributions". Journal of Multivariate Analysis 11: 368–385.  
  2. ^ Härdle and Simar (2012), p. 178.
  3. ^ Frahm, G., Junker, M., & Szimayer, A. (2003). Elliptical copulas: applicability and limitations. Statistics & Probability Letters, 63(3), 275-286.
  4. ^ Z. Landsman, E. Valdez, Tail conditional expectations for elliptical distribution North Am. Actuarial J., 7 (4) (2003), pp. 55–71
  • Wolfgang Karl. Härdle and Lèopold Simar (2012). Applied Multivariate Statistical Analysis (3rd ed.). Springer. 
  • Fang, K. Kotz, S. and Ng., K. (1990). Symmetric Multivariate and Related Distributions. London: Chapman & Hall. 
  • McNeil, Alexander; Frey, Rüdiger; Embrechts, Paul (2005). Quantitative Risk Management. Princeton University Press.  
  • Chamberlain, G. (1983). "A characterization of the distributions that imply mean-variance utility functions", Journal of Economic Theory 29, 185-201. doi:10.1016/0022-0531(83)90129-1
  • Landsman, Zinoviy M.; Valdez, Emiliano A. (2003) Tail Conditional Expectations for Elliptical Distributions (with discussion), The North American Actuarial Journal, 7, 55–123.
  • Owen, J., and Rabinovitch, R. (1983). "On the class of elliptical distributions and their applications to the theory of portfolio choice", Journal of Finance 38, 745-752. JSTOR 2328079
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.