World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000332116
Reproduction Date:

Title: F-distribution  
Author: World Heritage Encyclopedia
Language: English
Subject: Chi-squared distribution, F-test, Student's t-distribution, Fisher's z-distribution, Probability distribution
Collection: Analysis of Variance, Continuous Distributions, Probability Distributions
Publisher: World Heritage Encyclopedia


Probability density function
Cumulative distribution function
Parameters d1, d2 > 0 deg. of freedom
Support x ∈ [0, +∞)
PDF \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\!
CDF I_{\frac{d_1 x}{d_1 x + d_2}} \left(\tfrac{d_1}{2}, \tfrac{d_2}{2} \right)
Mean \frac{d_2}{d_2-2}\!
for d2 > 2
Mode \frac{d_1-2}{d_1}\;\frac{d_2}{d_2+2}
for d1 > 2
Variance \frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\!
for d2 > 4
Skewness \frac{(2 d_1 + d_2 - 2) \sqrt{8 (d_2-4)}}{(d_2-6) \sqrt{d_1 (d_1 + d_2 -2)}}\!
for d2 > 6
Ex. kurtosis see text
MGF does not exist, raw moments defined in text and in [1][2]
CF see text

The F-distribution, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after probability theory and statistics, a continuous probability distribution.[1][2][3][4] The F-distribution arises frequently as the null distribution of a test statistic, most notably in the analysis of variance; see F-test.


  • Definition 1
  • Characterization 2
    • Differential equation 2.1
  • Generalization 3
  • Related distributions and properties 4
  • See also 5
  • References 6
  • External links 7


If a random variable X has an F-distribution with parameters d1 and d2, we write X ~ F(d1, d2). Then the probability density function (pdf) for X is given by

Biologist and statistician Ronald Fisher
\begin{align} f(x; d_1,d_2) &= \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \\ &=\frac{1}{\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1+\frac{d_1}{d_2}\,x\right)^{-\frac{d_1+d_2}{2}} \end{align}

for real x ≥ 0. Here \mathrm{B} is the beta function. In many applications, the parameters d1 and d2 are positive integers, but the distribution is well-defined for positive real values of these parameters.

The cumulative distribution function is

F(x; d_1,d_2)=I_{\frac{d_1 x}{d_1 x + d_2}}\left (\tfrac{d_1}{2}, \tfrac{d_2}{2} \right) ,

where I is the regularized incomplete beta function.

The expectation, variance, and other details about the F(d1, d2) are given in the sidebox; for d2 > 8, the excess kurtosis is

\gamma_2 = 12\frac{d_1(5d_2-22)(d_1+d_2-2)+(d_2-4)(d_2-2)^2}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)}.

The k-th moment of an F(d1, d2) distribution exists and is finite only when 2k < d2 and it is equal to [5]

\mu _{X}(k) =\left( \frac{d_{2}}{d_{1}}\right)^{k}\frac{\Gamma \left(\tfrac{d_1}{2}+k\right) }{\Gamma \left(\tfrac{d_1}{2}\right) }\frac{\Gamma \left(\tfrac{d_2}{2}-k\right) }{\Gamma \left( \tfrac{d_2}{2}\right) }

The F-distribution is a particular parametrization of the beta prime distribution, which is also called the beta distribution of the second kind.

The characteristic function is listed incorrectly in many standard references (e.g., [2]). The correct expression [6] is

\varphi^F_{d_1, d_2}(s) = \frac{\Gamma(\frac{d_1+d_2}{2})}{\Gamma(\tfrac{d_2}{2})} U \! \left(\frac{d_1}{2},1-\frac{d_2}{2},-\frac{d_2}{d_1} \imath s \right)

where U(a, b, z) is the confluent hypergeometric function of the second kind.


A random variate of the F-distribution with parameters d1 and d2 arises as the ratio of two appropriately scaled chi-squared variates:[7]

X = \frac{U_1/d_1}{U_2/d_2}


In instances where the F-distribution is used, for example in the analysis of variance, independence of U1 and U2 might be demonstrated by applying Cochran's theorem.

Equivalently, the random variable of the F-distribution may also be written

X = \frac{s_1^2}{\sigma_1^2} \;/\; \frac{s_2^2}{\sigma_2^2}

where s12 and s22 are the sums of squares S12 and S22 from two normal processes with variances σ12 and σ22 divided by the corresponding number of χ2 degrees of freedom, d1 and d2 respectively.

In a frequentist context, a scaled F-distribution therefore gives the probability p(s12/s22 | σ12, σ22), with the F-distribution itself, without any scaling, applying where σ12 is being taken equal to σ22. This is the context in which the F-distribution most generally appears in F-tests: where the null hypothesis is that two independent normal variances are equal, and the observed sums of some appropriately selected squares are then examined to see whether their ratio is significantly incompatible with this null hypothesis.

The quantity X has the same distribution in Bayesian statistics, if an uninformative rescaling-invariant Jeffreys prior is taken for the prior probabilities of σ12 and σ22.[8] In this context, a scaled F-distribution thus gives the posterior probability p2212|s12, s22), where now the observed sums s12 and s22 are what are taken as known.

Differential equation

The probability density function of the F-distribution is a solution of the following differential equation:

\left\{\begin{array}{l} 2 x \left(d_1 x+d_2\right) f'(x)+\left(2 d_1 x+d_2 d_1 x-d_2 d_1+2 d_2\right) f(x)=0, \\[12pt] f(1)=\frac{d_1^{\frac{d_1}{2}} d_2^{\frac{d_2}{2}} \left(d_1+d_2\right){}^{\frac{1}{2} \left(-d_1-d_2\right)}}{B\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \end{array}\right\}


A generalization of the (central) F-distribution is the noncentral F-distribution.

Related distributions and properties

  • If X \sim \chi^2_{d_1} and Y \sim \chi^2_{d_2} are independent, then \frac{X / d_1}{Y / d_2} \sim \mathrm{F}(d_1, d_2)
  • If X \sim \operatorname{Beta}(d_1/2,d_2/2) (Beta distribution) then \frac{d_2 X}{d_1(1-X)} \sim \operatorname{F}(d_1,d_2)
  • Equivalently, if X ~ F(d1, d2), then \frac{d_1 X/d_2}{1+d_1 X/d_2} \sim \operatorname{Beta}(d_1/2,d_2/2).
  • If X ~ F(d1, d2) then Y = \lim_{d_2 \to \infty} d_1 X has the chi-squared distribution \chi^2_{d_1}
  • F(d1, d2) is equivalent to the scaled Hotelling's T-squared distribution \frac{d_2}{d_1(d_1+d_2-1)} \operatorname{T}^2 (d_1, d_1 +d_2-1) .
  • If X ~ F(d1, d2) then X−1 ~ F(d2, d1).
  • If X ~ t(n) then
X^{2} \sim \operatorname{F}(1, n)
X^{-2} \sim \operatorname{F}(n, 1)
\tfrac{|X-\mu|}{|Y-\mu|} \sim \operatorname{F}(2,2)
  • If \operatorname{Q}_X(p) is the quantile p for X ~ F(d1, d2) and \operatorname{Q}_Y(1-p) is the quantile 1−p for Y ~ F(d2, d1), then

See also


  1. ^ a b Johnson, Norman Lloyd; Samuel Kotz; N. Balakrishnan (1995). Continuous Univariate Distributions, Volume 2 (Second Edition, Section 27). Wiley.  
  2. ^ a b c Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 26",  .
  3. ^ NIST (2006). Engineering Statistics Handbook – F Distribution
  4. ^ Mood, Alexander; Franklin A. Graybill; Duane C. Boes (1974). Introduction to the Theory of Statistics (Third Edition, pp. 246–249). McGraw-Hill.  
  5. ^ Taboga, Marco. "The F distribution". 
  6. ^ Phillips, P. C. B. (1982) "The true characteristic function of the F distribution," Biometrika, 69: 261–264 JSTOR 2335882
  7. ^ M.H. DeGroot (1986), Probability and Statistics (2nd Ed), Addison-Wesley. ISBN 0-201-11366-X, p. 500
  8. ^ G.E.P. Box and G.C. Tiao (1973), Bayesian Inference in Statistical Analysis, Addison-Wesley. p.110

External links

  • -distributionFTable of critical values of the
  • -distribution contains a brief historyFEarliest Uses of Some of the Words of Mathematics: entry on
  • -testingFFree calculator for
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.