#jsDisabledContent { display:none; } My Account | Register | Help
 Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# F-divergence

Article Id: WHEBN0015224289
Reproduction Date:

 Title: F-divergence Author: World Heritage Encyclopedia Language: English Subject: Collection: F-Divergences Publisher: World Heritage Encyclopedia Publication Date:

### F-divergence

In probability theory, an ƒ-divergence is a function Df (P  || Q) that measures the difference between two probability distributions P and Q. It helps the intuition to think of the divergence as an average, weighted by the function f, of the odds ratio given by P and Q.

These divergences were introduced and studied independently by Csiszár (1963), Morimoto (1963) and Ali & Silvey (1966) and are sometimes known as Csiszár ƒ-divergences, Csiszár-Morimoto divergences or Ali-Silvey distances.

## Contents

• Definition 1
• Instances of f-divergences 2
• Properties 3
• References 4

## Definition

Let P and Q be two probability distributions over a space Ω such that P is absolutely continuous with respect to Q. Then, for a convex function f such that f(1) = 0, the f-divergence of Q from P is defined as

D_f(P\parallel Q) \equiv \int_{\Omega} f\left(\frac{dP}{dQ}\right)\,dQ.

If P and Q are both absolutely continuous with respect to a reference distribution μ on Ω then their probability densities p and q satisfy dP = p dμ and dQ = q dμ. In this case the f-divergence can be written as

D_f(P\parallel Q) = \int_{\Omega} f\left(\frac{p(x)}{q(x)}\right)q(x)\,d\mu(x).

The f-divergences can be expressed using Taylor series and rewritten using a weighted sum of chi-type distances (Nielsen & Nock (2013)).

## Instances of f-divergences

Many common divergences, such as KL-divergence, Hellinger distance, and total variation distance, are special cases of f-divergence, coinciding with a particular choice of f. The following table lists many of the common divergences between probability distributions and the f function to which they correspond (cf. Liese & Vajda (2006)).

Divergence Corresponding f(t)
KL-divergence t \ln t \, , -\ln t
Hellinger distance (\sqrt{t} - 1)^2,\,2(1-\sqrt{t})
Total variation distance |t - 1| \,
\chi^2-divergence (t - 1)^2,\,t^2 -1
α-divergence \begin{cases} \frac{4}{1-\alpha^2}\big(1 - t^{(1+\alpha)/2}\big), & \text{if}\ \alpha\neq\pm1, \\ t \ln t, & \text{if}\ \alpha=1, \\ - \ln t, & \text{if}\ \alpha=-1 \end{cases}

## Properties

• Non-negativity: the ƒ-divergence is always positive; it's zero if and only if the measures P and Q coincide. This follows immediately from Jensen’s inequality:
D_f(P\!\parallel\!Q) = \int \!f\bigg(\frac{dP}{dQ}\bigg)dQ \geq f\bigg( \int\frac{dP}{dQ}dQ\bigg) = f(1) = 0.
• Monotonicity: if κ is an arbitrary transition probability that transforms measures P and Q into Pκ and Qκ correspondingly, then
D_f(P\!\parallel\!Q) \geq D_f(P_\kappa\!\parallel\!Q_\kappa).
The equality here holds if and only if the transition is induced from a sufficient statistic with respect to {P, Q}.
• Joint Convexity: for any 0 ≤ λ ≤ 1
D_f\Big(\lambda P_1 + (1-\lambda)P_2 \parallel \lambda Q_1 + (1-\lambda)Q_2\Big) \leq \lambda D_f(P_1\!\parallel\!Q_1) + (1-\lambda)D_f(P_2\!\parallel\!Q_2).
This follows from the convexity of the mapping (p,q) \mapsto q f(p/q) on \mathbb{R}_+^2.

## References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.

By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.