Germ-Plasm Theory

Not to be confused with Germplasm, a collection of genetic resources for an organism (such as seeds or embryos).

Germ plasm or polar plasm is a zone found in the cytoplasm of the egg cells of some model organisms (such as Caenorhabditis elegans, Drosophila melanogaster, Xenopus laevis), which contains determinants that will give rise to the germ cell lineage. As the zygote undergoes mitotic divisions the germ plasm is ultimately restricted to a few cells of the embryo. These germ cells then migrate to the gonads.

Germ plasm theory

The term germ plasm was first used by the German biologist August Weismann (1834–1914). His germ plasm theory states that multicellular organisms consist of germ cells that contain and transmit heritable information, and somatic cells which carry out ordinary bodily functions.[1] In the germ plasm theory, inheritance in a multicellular organism only takes place by means of the germ cells: the gametes, such as egg cells and sperm cells. Other cells of the body do not function as agents of heredity. The effect is one-way: germ cells produce somatic cells, and more germ cells; the germ cells are not affected by anything the somatic cells learn or any ability the body acquires during its life. Genetic information cannot pass from soma to germ plasm and on to the next generation. This is referred to as the Weismann barrier.[2] This idea, if true, rules out the inheritance of acquired characteristics as proposed by Jean-Baptiste Lamarck.[3]

The part of Weismann's theory which proved most vulnerable was his notion that the germ plasm (effectively, genes) were successively reduced during division of somatic cells. As modern genetics developed, it became clear that this idea was quite wrong.[4] Cases such as Dolly (the famous cloned ewe) which, via somatic cell nuclear transfer, proved that adult cells retain a complete set of information – as opposed to Weismann's increasingly determined gradual loss of genetic information – putting this aspect of Weismann's theory to rest.

The idea was to some extent anticipated in an 1865 article by Francis Galton, published in Macmillan's Magazine, which set out a weak version of the concept. In 1889 Weismann wrote to acknowledge that "You have exposed in your paper an idea which is in one essential point nearly allied to the main idea contained in my theory of the continuity of germ-plasm".[5]

Germplasm, other usage

  • Germplasm, the collection of genetic resources

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.