 #jsDisabledContent { display:none; } My Account | Register | Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

Jensen–Shannon divergence

Article Id: WHEBN0004019573
Reproduction Date:

 Title: Jensen–Shannon divergence Author: World Heritage Encyclopedia Language: English Subject: List of statistics articles Collection: Publisher: World Heritage Encyclopedia Publication Date:

Jensen–Shannon divergence

In probability theory and statistics, the JensenShannon divergence is a popular method of measuring the similarity between two probability distributions. It is also known as information radius (IRad) or total divergence to the average. It is based on the Kullback–Leibler divergence, with some notable (and useful) differences, including that it is symmetric and it is always a finite value. The square root of the Jensen–Shannon divergence is a metric often referred to as Jensen-Shannon distance.

Definition

Consider the set M_+^1(A) of probability distributions where A is a set provided with some σ-algebra of measurable subsets. In particular we can take A to be a finite or countable set with all subsets being measurable.

The Jensen–Shannon divergence (JSD) M_+^1(A) \times M_+^1(A) \rightarrow [0,\infty{}) is a symmetrized and smoothed version of the Kullback–Leibler divergence D(P \parallel Q). It is defined by

{\rm JSD}(P \parallel Q)= \frac{1}{2}D(P \parallel M)+\frac{1}{2}D(Q \parallel M)

where M=\frac{1}{2}(P+Q)

A more general definition, allowing for the comparison of more than two probability distributions, is:

{\rm JSD}_{\pi_1, \ldots, \pi_n}(P_1, P_2, \ldots, P_n) = H\left(\sum_{i=1}^n \pi_i P_i\right) - \sum_{i=1}^n \pi_i H(P_i)

where \pi_1, \ldots, \pi_n are weights that are selected for the probability distributions P_1, P_2, \ldots, P_n and H(P) is the Shannon entropy for distribution P. For the two-distribution case described above,

P_1=P, P_2=Q, \pi_1 = \pi_2 = \frac{1}{2}.\

Bounds

The Jensen–Shannon divergence is bounded by 1, given that one uses the base 2 logarithm.

0 \leq {\rm JSD}( P \parallel Q ) \leq 1

For log base e, or ln, which is commonly used in statistical thermodynamics, the upper bound is ln(2):

0 \leq {\rm JSD}( P \parallel Q ) \leq \ln(2)

Relation to mutual information

The Jensen–Shannon divergence is the mutual information between a random variable X associated to a mixture distribution between P and Q and the binary indicator variable Z that is used to switch between P and Q to produce the mixture. Let X be some abstract function on the underlying set of events that discriminates well between events, and choose the value of X according to P if Z = 0 and according to Q if Z = 1. That is, we are choosing X according to the probability measure M=(P+Q)/2, and its distribution is the mixture distribution. We compute

\begin{align} I(X; Z) &= H(X) - H(X|Z)\\ &= -\sum M \log M + \frac{1}{2} \left[ \sum P \log P + \sum Q \log Q \right] \\ &= -\sum \frac{P}{2} \log M - \sum \frac{Q}{2} \log M + \frac{1}{2} \left[ \sum P \log P + \sum Q \log Q \right] \\ &= \frac{1}{2} \sum P \left( \log P - \log M\right ) + \frac{1}{2} \sum Q \left( \log Q - \log M \right) \\ &= {\rm JSD}(P \parallel Q) \end{align}

It follows from the above result that the Jensen–Shannon divergence is bounded by 0 and 1 because mutual information is non-negative and bounded by H(Z) = 1.

One can apply the same principle to a joint distribution and the product of its two marginal distribution (in analogy to Kullback–Leibler divergence and mutual information) and to measure how reliably one can decide if a given response comes from the joint distribution or the product distribution—subject to the assumption that these are the only two possibilities.

Quantum Jensen–Shannon divergence

The generalization of probability distributions on density matrices allows to define quantum Jensen–Shannon divergence (QJSD). It is defined for a set of density matrices (\rho_1,\ldots,\rho_n) and probability distribution \pi=(\pi_1,\ldots,\pi_n) as

{\rm QJSD}(\rho_1,\ldots,\rho_n)= S\left(\sum_{i=1}^n \pi_i \rho_i\right)-\sum_{i=1}^n \pi_i S(\rho_i)

where S(\pi_i) is the von Neumann entropy. This quantity was introduced in quantum information theory, where it is called the Holevo information: it gives the upper bound for amount of classical information encoded by the quantum states (\rho_1,\ldots,\rho_n) under the prior distribution \pi (see Holevo's theorem) Quantum Jensen–Shannon divergence for \pi=\left(\frac{1}{2},\frac{1}{2}\right) and two density matrices is a symmetric function, everywhere defined, bounded and equal to zero only if two density matrices are the same. It is a square of a metric for pure states but it is unknown whether the metric property holds in general. The Bures metric is closely related to the quantum JS divergence; it is the quantum analog of the Fisher information metric.

Applications

The Jensen–Shannon divergence has been applied in bioinformatics and genome comparison, in protein surface comparison, and in the social sciences and the quantitative study of history,  and in machine learning.