World Library  
Flag as Inappropriate
Email this Article

Joseph Whitworth

Sir Joseph Whitworth
Sir Joseph Whitworth
Born (1803-12-21)21 December 1803
Stockport, Cheshire, England, United Kingdom
Died 22 January 1887(1887-01-22) (aged 83)
Monte Carlo, Monaco
Engineering career
Institution memberships Royal Society
Institution of Mechanical Engineers
Significant advance Whitworth standardised screw threads
Significant awards

Sir Joseph Whitworth, 1st Baronet (21 December 1803 – 22 January 1887) was an English engineer, entrepreneur, inventor and philanthropist.[2] In 1841, he devised the British Standard Whitworth system, which created an accepted standard for screw threads. Whitworth also created the Whitworth rifle, often called the 'sharpshooter' because of its accuracy and considered one of the earliest examples of a sniper rifle.[3][4][5][6][7][8]

At his death in 1887, he bequeathed much of his fortune for the people of Manchester, with the Whitworth Art Gallery and Christie Hospital partly funded by Whitworth's money. Whitworth Street and Whitworth Hall in Manchester are named in his honour. Whitworth was created a baronet on 7 October 1869.[9][10][11]


  • Biography 1
    • Early life 1.1
    • Career 1.2
    • Death 1.3
    • Memorials 1.4
  • Work 2
    • Accuracy and standardisation 2.1
    • Whitworth rifle 2.2
    • Breech-loading artillery 2.3
  • References 3


Early life

Whitworth was born in Stockport, Cheshire, the son of Charles Whitworth, a teacher and Congregational minister, and at an early age developed an interest in machinery. He was educated at Idle, near Bradford, West Riding of Yorkshire; his aptitude for mechanics became apparent when he began work for his uncle.[12]


After leaving school Whitworth became an Manchester. He then moved to London where he found employment working for Henry Maudslay, the inventor of the screw-cutting lathe, alongside such people as James Nasmyth (inventor of the steam hammer) and Richard Roberts.

Whitworth developed great skill as a mechanic while working for Maudslay, developing various precision machine tools and also introducing a box casting scheme for the iron frames of machine tools that simultaneously increased their rigidity and reduced their weight.

Whitworth also worked for Edward Walters was commissioned to build 'The Firs' for Whitworth. This was a grand mansion at Fallowfield, Manchester, which still stands today, functioning as Chancellors Hotel & Conference Centre.

Whitworth received many awards for the excellence of his designs and was financially very successful. In 1850, then a President of the Liverpool. He was conferred with Honorary Membership of the Institution of Engineers and Shipbuilders in Scotland in 1859.[2] He was elected a Fellow of the Royal Society (FRS) in 1857.[1]

A strong believer in the value of technical education, Whitworth backed the new Mechanics' Institute in Manchester (later UMIST) and helped found the Manchester School of Design. In 1868, he founded the Whitworth Scholarship for the advancement of mechanical engineering. He donated a sum of £128,000 to the government in 1868 (approximately £6.5 million in 2010) to bring "science and industry" closer together and to fund scholarships.[14]


The grave of Sir Joseph Whitworth Bart. In the grounds of St Helen's Parish Church, Darley Dale, Derbyshire (Whitworth's grave is the central tomb)

In January 1887 at the age of 83, Sir Joseph Whitworth died in Monte Carlo where he had travelled in the hope of improving his health. He was buried at St Helen's Church, Darley Dale, Derbyshire. A detailed obituary was published in the American magazine The Manufacturer and Builder (Volume 19, Issue 6, June 1887). He directed his trustees to spend his fortune on philanthropic projects, which they still do to this day. Part of his bequest was used to establish the Whitworth Art Gallery, now part of the University of Manchester.


Plaque from the memorial in Whitworth Park, Darley Dale erected in 1894

Richard Copley Christie was a friend of Whitworth's. By Whitworth's will, Christie was appointed one of three legatees, each of whom was left more than half a million pounds for their own use, ‘they being each of them aware of the objects’ to which these funds would have been put by Whitworth. They chose to spend more than a fifth of the money on support for Owens College, together with the purchase of land now occupied by the Manchester Royal Infirmary. In 1897, Christie personally assigned more than £50,000 for the erection of the Whitworth Hall, to complete the front quadrangle of Owens College. He was president of the Whitworth Institute from 1890 to 1895 and was much interested in the medical and other charities of Manchester, especially the Cancer Pavilion and Home, of whose committee he was chairman from 1890 to 1893, and which later became the Christie Hospital.[15]

The university's Whitworth Art Gallery (formerly the Whitworth Institute) and adjacent Whitworth Park were established as part of his bequest to Manchester after his death. Nearby Whitworth Park Halls of Residence also bears his name, as does Whitworth Street, one of the main streets in Manchester city centre, running from London Road to the south end of Deansgate. Near 'The Firs' a cycleway behind Owens Park is called Whitworth Lane. In Darley Dale is another Whitworth Park. In recognition of his achievements and contributions to education in Manchester, the Whitworth Building on the University of Manchester's Main Campus is named in his honour.


Graphic representation of formulas for the pitches of threads of screw bolts
screw making machine from 1871

Accuracy and standardisation

Whitworth popularised a method of producing accurate flat surfaces (see Surface plate) during the 1830s, using engineer's blue and scraping techniques on three trial surfaces. Up until his introduction of the scraping technique, the same three plate method was employed using polishing techniques, giving less accurate results. This led to an explosion of development of precision instruments using these flat surface generation techniques as a basis for further construction of precise shapes.

His next innovation, in 1840, was a measuring technique called "end measurements" that used a precision flat plane and measuring screw, both of his own invention. The system, with a precision of one millionth of an inch, was demonstrated at the Great Exhibition of 1851.

In 1841 Whitworth devised a standard for screw threads with a fixed thread angle of 55° and having a standard pitch for a given diameter. This soon became the first nationally standardised system; its adoption by the railway companies, who until then had all used different screw threads, leading to its widespread acceptance. It later became a British Standard, "British Standard Whitworth", abbreviated to BSW and governed by BS 84:1956.

Whitworth rifle

Whitworth rifle

Whitworth was commissioned by the War Department of the British government to design a replacement for the calibre .577-inch Pattern 1853 Enfield, whose shortcomings had been revealed during the recent Crimean War. The Whitworth rifle had a smaller bore of 0.451 inch (11.4554 mm) which was hexagonal, fired an elongated hexagonal bullet and had a faster rate of twist rifling [one turn in twenty inches] than the Enfield, and its performance during tests in 1859 was superior to the Enfield's in every way. The test was reported in The Times on 23 April as a great success. However, the new bore design was found to be prone to fouling and it was four times more expensive to manufacture than the Enfield, so it was rejected by the British government, only to be adopted by the French Army. An unspecified number of Whitworth rifles found their way to the Confederate states in the American Civil War, where they were called "Whitworth Sharpshooters".

The Enfield rifle was converted to Snider-Enfield Rifle by Jacob Snider, a Dutch-American wine merchant from Philadelphia. By converting existing Enfield rifles this way, the cost of a "new" breech-loading Snider-Enfield rifle was only 12 shillings (60p).

Queen Victoria opened the first meeting of the National Rifle Association at Wimbledon, in 1860 by firing a Whitworth rifle from a fixed mechanical rest. The rifle scored a bull's eye at a range of 400 yards (366 m).

Breech-loading artillery

12-pounder Whitworth breechloading rifle
12-pounder Whitworth breechloading rifle

Whitworth also designed a large Armstrong, but was used in the American Civil War.

While trying to increase the bursting strength of his gun barrels, Whitworth patented a process called "fluid-compressed steel" for casting steel under pressure, and built a new steel works near Manchester. Some of his castings were shown at the Great Exhibition in Paris ca. 1883.


  1. ^ a b "Fellowship of the Royal Society 1660-2015". London:  
  2. ^  "Whitworth, Joseph".  
  3. ^  
  4. ^ Bradshaw, L. D. (1985). Origins of Street Names in the City of Manchester. Radcliffe: Neil Richardson.  
  5. ^ Kilburn, Terence (1987) Joseph Whitworth: Toolmaker, two editions, 1987 and 2002
  6. ^ Kilburn, Terence ( ) Darley's Lady Bountiful: Lady Louisa Whitworth
  7. ^ Lea, F. C. (1946). Sir Joseph Whitworth: a Pioneer of Mechanical Engineering. London: Longmans, Green. 
  8. ^ Roe, Joseph Wickham (1916), English and American Tool Builders, New Haven, Connecticut: Yale University Press,  . Reprinted by McGraw-Hill, New York and London, 1926 (LCCN 27-24075); and by Lindsay Publications, Inc., Bradley, Illinois, (ISBN 978-0-917914-73-7).
  9. ^ The London Gazette: no. 23544. p. 5446. 8 October 1869.
  10. ^ Whitworth, Joseph (1873) Miscellaneous papers on mechanical subjects: Guns and Steel. London: Longmans, Green, Reader & Dyer
  11. ^ Joseph Whitworth in The Illustrated London Amanack 1869
  12. ^ Bradshaw (1985); pp. 57–58
  13. ^ Edkins, Jo. "Small units". Imperial Measures of Length. Jo Edkins. Retrieved 2009-09-23. 
  14. ^ "Joseph Whitworth trust". Retrieved 2012-10-30. 
  15. ^ A. W. Ward, ‘Christie, Richard Copley (1830–1901)’, rev. M. C. Curthoys, Oxford Dictionary of National Biography, Oxford University Press, 2004 accessed 20 Dec 2007, paid registration required
Professional and academic associations
Preceded by
William Fairbairn
President of the Institution of Mechanical Engineers
Succeeded by
John Penn
Preceded by
Robert Napier
President of the Institution of Mechanical Engineers
Succeeded by
John Penn
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.